共查询到18条相似文献,搜索用时 94 毫秒
1.
图像边缘检测的关键是在尽量多检测到边缘的同时更有效地抑制噪声,为此提出了一种融合小波变换和形态学差分算法的边缘检测方法。将源图像进行小波分解,高频分量利用小波模极大值算法进行边缘检测,可有效提取高频边缘;低频分量采用形态学差分算法进行边缘检测,能够检测出低频边缘;采用一定的融合规则将两个边缘检测图像融合在一起。实验结果表明,该方法优于单独使用小波模极大值法或数学形态学法,对噪声具有很好的鲁棒性,得到的图像边缘连续、清晰。 相似文献
2.
针对传统的单一边缘检测算法抗噪能力差、边缘不连续等不足,本文提出采用两种算法相结合的方式来进行边缘检测。首先,对原始图像进行多层小波分解;然后,对小波分解后的图像低频部分用提出的8点邻域自适应梯度算法进行边缘检测,依靠边缘生长方法保证检测出的边缘的连续性,对高频部分用小波变换的局部模极大值算法检测图像的边缘;最后,将各层边缘信息按一定的融合规则融合起来得到最终的图像边缘。实验结果表明,该方法与传统的边缘检测算法相比具有定位精度高、去噪效果好等明显的优点,也能较准确地提取图像的边缘。 相似文献
3.
提出了一种基于静态小波变换(SWT)和2代曲波(curvelet)变换的图像融合算法.首先将原图像分别进行SWT变换得到高、低频分量.然后,对低频分量采用基于2代曲波变换的方法进行融合,对高频分量基于绝对值最大的方法进行融合.最后进行SWT逆变换得到最终的融合图像.实验结果表明,该算法具有SWT变换和2代曲波变换二者的优点,主客观评价均优于单独SWT变换和单独2代曲波变换融合算法,也优于离散小波变换(DWT)和曲波变换相结合的融合算法. 相似文献
4.
5.
6.
7.
基于小波模极大值和形态学的图像边缘检测算法 总被引:1,自引:0,他引:1
提出一种基于小波变换和形态学的图像边缘检测方法.通过对源图像进行小波分解,用小波模极大值法和基于数学形态学的算法分别提取高低频子图像的边缘,最后采用合理的融合规则将两个边缘图像进行融合.实验结果表明,该算法能有效地抑制噪声,且边缘清晰、准确,效果优于经典的边缘检测算法. 相似文献
8.
9.
提出了一种新的图像融合算法——基于边缘检测的双树复小波图像融合算法。多聚焦图像经过双树复小波变换较好地克服了传统小波变换的平移敏感性等缺点;低频系数利用边缘信息进行融合,较好地保留了图像的细节信息,提高了融合图像的质量;高频系数则采用常见的基于区域特征的融合规则。实验结果证明,该算法能够有效地提高融合图像的清晰度,细节更为丰富。 相似文献
10.
边缘是一个区域的结束,也是另一个区域的开始,利用该特征可以分割图像。需要指出的是,检测出的边缘并不等同于实际目标的真实边缘。边缘是边界检测的重要基础,也是外形检测的基础。 相似文献
11.
曲波变换在处理“曲线奇异”时有明显的优势。给出了曲波变换的计算方法、公式和具体步骤。对dissolve渐变转场过程中的各相邻帧进行曲波变换。以曲波变换后高频系数的平方作为图像帧的特征量,计算相邻帧间此特征量的欧氏距离。用大量的高清码流对算法进行了实验。实验结果表明,此算法有较高的查全率和查准率。 相似文献
12.
分析了X射线探伤图像的特点,将小波变换技术应用到X射线图像的边缘检测中,提出了基于小波变换的模极大值边缘检测算法,利用二次B样条小波,采用Mallat快速算法进行小波分解,采用分块阈值选取方法确定模极大值点,给出缺陷边缘。实验结果表明,该方法去噪效果好,检测出的缺陷边缘具有较强的连续性。 相似文献
13.
Curvelet是继小波和Ridgelet之后一种新的图像多尺度表示方法,Curvelet具有多尺度,多方向的特性,属于高度各向异性的变换。第二代Curvelet变换克服了第一代Curvelet变换的高数据冗余度问题,特别是基于”Wrapping”方式的第二代离散Curvelet算法,不仅运算快速、几何真实,而且快速可逆。因此,将第二代Curvelet变换用于图像增强,并通过自适应地确定Curvelet分解子带的噪声水平,实现了一种自适应图像增强方法。实验结果表明,同基于小波变换的图像增强方法相比,该方法具有明显的优势。 相似文献
14.
针对小波变换边缘检测算法抗噪能力差、图像边缘不连续等缺点,提出一种将二进小波变换与形态学算子融合的边缘检测算法。利用新构造的二进小波滤波器边缘检测算法对含噪图像进行边缘检测,可以保留较多的边缘细节;利用新设计的多结构抗噪形态学算子对含噪图像进行边缘检测,抑制噪声良好;将两种算法得到的边缘结果按一定规则进行融合,利用Laplace算子锐化融合后的图像,得到最终的边缘检测结果。实验结果表明,该融合算法在抑制噪声的同时显示较多的图像细节,检测的图像边缘连续且准确。 相似文献
15.
一种改进的小波自适应边缘检测算法* 总被引:1,自引:0,他引:1
为合理选择小波变换尺度,解决抑制噪声和边缘定位之间的矛盾,提出了一种基于局部熵的自适应尺度选择方法,采用局部熵预处理图像,根据熵值大小自适应地选择小波变换的尺度,各区域分别按照相应的尺度进行小波变换检测图像边缘。实验结果表明,此方法比基于均方差的小波自适应算法检测到的边缘更清晰,定位更准确。 相似文献
16.
17.
基于小波变换的图像去噪优化算法 总被引:4,自引:2,他引:4
提出了一种基于小波变换的图像去噪优化算法。先通过小波边缘检测法求出有噪图像的边缘图像;再利用广义交叉确认原理求出的阈值对原有噪图像进行小波去噪,得到平滑图像;最后,将边缘图像嵌入平滑图像中,得到去噪后的图像。该算法能在有效去噪的同时保留图像的细节信息,提高了信噪比。 相似文献
18.
基于快速曲波变换的图像去噪算法 总被引:3,自引:0,他引:3
曲波(Curvelet)可以很好的表示含曲线奇异的函数的异向性,但传统的曲波99变换采用复杂的参数结构和重叠的窗口,既不利于数学定量分析,也增加数字实现的冗余。采用快速曲波变换,对物体边缘信息具有最优稀疏表示。通过平移不变的曲波萎缩算法,可获得比传统去噪方法更好的均方误差(MSE)。实验结果表明,与传统的MultiVisu,MultiBayes,WHMT去噪算法比较,算法CS-FDCT去噪效果最佳,在噪声方差"=25时,使用该方法的峰值信噪比(PSNR)可高达30.8528,并且去噪后的图像具有最好的视觉效果。 相似文献