首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
聚苯硫醚共混合金的研究进展   总被引:2,自引:2,他引:2  
综述近年来聚苯硫醚(PPS)共混合金的研究进展,分别从形态结构(PPS/结晶性共混体系、PPS/非晶性共混体系)和性能(PPS/通用工程塑料共混体系、PPS/特种工程塑料共混体系)两个角度对PPS共混合金进行了较为详尽的总结,并展望了PPS共混合金的发展趋势。  相似文献   

2.
王英  姜涛  王宪忠  芦艾 《中国塑料》2015,29(3):51-56
通过熔融共混制备了聚苯硫醚/无苯基聚甲基乙烯基硅氧烷(PPS/NPMVS)共混物及聚苯硫醚/单苯基聚甲基乙烯基硅氧烷(PPS/SPMVS)共混物,并对该共混物体系的微观形貌及力学性能进行了分析表征。结果表明,弹性体在共混物中均匀分散,弹性体的加入对PPS基体起到明显的增韧效果;当弹性体的含量为3 %(质量分数,下同)时,2种共混材料的增韧性能最佳,PPS/NPMVS共混材料的断裂伸长率相对于PPS基体提高了3.9倍,PPS/SPMVS共混材料的断裂伸长率相对于PPS基体提高了2.4倍;当NPMVS含量为10 %时,PPS/NPMVS共混材料的冲击强度相对于PPS基体提高了1.8倍,当SPMVS含量为3 %时,PPS/SPMVS共混材料的冲击强度相对于PPS基体提高了1.4倍。  相似文献   

3.
高粘度PET/PPS共混物的力学及流变性能研究   总被引:1,自引:0,他引:1  
通过在高粘度聚酯(PET)中加入聚苯硫醚(PPS),经熔融共混挤出制备PET/PPS共混物,研究了PPS对PET力学性能和流变性能的影响。结果表明,适量PPS可提高PET的拉伸强度和弯曲强度,而缺口冲击强度略有下降;共混物的流变行为符合假塑性流体的流动规律,随着PPS含量的增加,共混物的非牛顿指数先增大后减小;共混物的粘流活化能随着PPS含量的增加而降低。当PPS质量分数为5%时,共混物的综合性能最佳,且具有良好的成型加工性能。  相似文献   

4.
PPS的共混改性   总被引:2,自引:0,他引:2  
简要介绍了聚苯硫醚(PPS)与其他聚合物进行共混改性的研究进展。着重讨论了PPS PA66、PPS PC、PPS PPO等的共混及其性能。此外,展望了PPS合金的发展前景。  相似文献   

5.
简述了聚苯硫醚(PPS)优异的综合性能,并介绍了PPS当前的应用状况,以及用纳米材料和其他聚合物与PPS共混改性和化学改性的研究及应用,深入分析了PPS复合材料性能差异的结构、形态原因,最后对PPS未来的发展趋势进行展望。  相似文献   

6.
本文运用动态力学分析(DMA)手段研究了聚苯硫醚(PPS)和聚醚砜(PES)熔融挤出共混物的相容性、界面行为,PPS对PES低温β转变的影响,以及热处理对PPS、PES及其共混物动态力学行为的影响。结果表明:热处理对PPS、PES以及PPS/PES共混物的动态力学行为有深刻影响。  相似文献   

7.
选用聚苯硫醚(PPS)作为聚芳醚腈(PEN)的增塑剂,通过熔融共混的方法制备了PEN/PPS合金,并研究了PPS对PEN的增塑、增韧作用及性能的影响.结果表明,PPS对PEN具有很好的增塑和增韧效果,当PPS质量分数为15%时,大幅提高了PEN的加工流动性和韧性;PEN/PPS合金的其它力学性能和耐热性能与PEN相当.  相似文献   

8.
以超临界CO2为物理发泡剂通过固态间歇发泡法制备了不同共混比例的聚苯硫醚/聚醚醚酮(PPS/PEEK)微孔材料。采用差示扫描量热法探讨了PPS/PEEK共混物的热性能,通过扫描电子显微镜观察分析了共混组成和饱和压力对微孔材料泡孔结构与分布的影响规律,并对微孔材料的冲击强度、介电常数和动态力学性能进行了研究。结果表明,共混使PPS相和PEEK相的结晶度增大,共混物中的气体饱和浓度随着PEEK组分含量的增加而增大。与纯PPS和PEEK相比,共混物中形成致密的多级泡孔结构。饱和压力越大则微孔材料的泡孔密度越大,且泡孔尺寸越小。微孔发泡使PPS/PEEK共混物的冲击强度增大,介电常数和储能模量降低。  相似文献   

9.
研究了增容剂乙烯(E)-丙烯酸酯(MA)-甲基丙烯酸缩水甘油酯(GMA)共聚物(E-MA-GMA)对聚苯硫醚(PPS)/聚酰胺(PA)66共混体系的相容性、力学性能、热性能、流变性能的影响。结果表明,增容剂的加入,增加了共混体系的相容性,提高了共混物的力学性能;DSC结果表明,E-MA-GMA影响共混体系的结晶和熔融行为;流变性能测试结果表明,增容PPS/PA66共混体系是假塑性流体,E-MA-GMA用量增加,使共混体系的表观黏度增大。  相似文献   

10.
采用苯乙烯-丙烯腈-甲基丙烯酸缩水甘油酯(St-AN-GMA)作为聚苯硫醚/尼龙66(PPS/PA66)的相容剂,并研究其对共混物结构与性能的影响。通过对共混物力学性能、相容性、热性能、断面形貌的研究表明:当St-AN-GMA质量分数在4%左右时,共混物的综合力学性能较好;随着St-AN-GMA用量的增加,共混物中PPS与PA66的玻璃化转变温度(θg)相互靠近,改善了共混物的相容性;St-AN-GMA影响了共混物的结晶与熔融行为;St-AN-GMA的加入有利于PA66在PPS中的分散,且分散相粒径尺寸较小。  相似文献   

11.
In this study the PPS/ABS blend system was investigated in order to collectively identify the relationship among blend morphology, chemical compatibilization, and thermal property. The ABS resin was chemically modified by the incorporation of maleic anhydride through reactive extrusion for enhanced compatibilization, and ABS/PPS and the modified ABS/PPS blends were prepared by a twin‐screw extruder. The effect of chemical modification of ABS on the morphological, mechanical, and thermal properties of the resulting blend was examined. A strong chemical interaction between PPS and MABS was observed by optical microscopy, scanning electron microscopy, and FTIR. The PPS/MABS blend showed a single glass‐transition temperature in dynamic mechanical analysis, demonstrating pseudo‐homogeneous phase morphology induced by chemical compatibilization. The PPS/MABS blend also exhibited an enhanced thermal stability and heat distortion temperature compared with the PPS/ABS blend. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 661–665, 2003  相似文献   

12.
使用DSC方法研究了聚苯硫醚(PPS)以及超支化聚苯硫醚/聚苯硫醚共混纤维的非等温结晶动力学,分析了结晶峰值温度等参数,并用Ozawa方程和莫志深方程描述了非等温动力学。结果表明:超支化聚苯硫醚/聚苯硫醚共混纤维的非等温结晶动力学过程能够使用莫志深方程来描述。在共混过程中,少量的超支化聚苯硫醚在线型聚苯硫醚基体材料中能够起到成核剂的作用,提高结晶速率和结晶温度,减少结晶诱导期和半结晶时间。因此,超支化聚苯硫醚/聚苯硫醚共混纤维的结晶速率要快于纯聚苯硫醚纤维的结晶速率。热失重分析表明:超支化聚苯硫醚/聚苯硫醚共混纤维具有与纯聚苯硫醚纤维相同或更优良的热稳定性,添加超支化聚苯硫醚不会降低成品纤维的热稳定性。  相似文献   

13.
The crystalline morphologies of isothermally and nonisothermally crystallized poly(phenylene sulfide) (PPS) and its blend with polyamide 66 (PA66) were investigated by polarized optical microscopy with a hot stage. The spherulite superstructure of PPS was greatly affected by crystallizable PA66; a Maltese cross was not clear, and the impingement between spherulites disappeared. This could be ascribed to the formation of small crystals of PA66, which filled in the PPS lamellae. The nonisothermal crystallization behavior was also measured by differential scanning calorimetry. The presence of PA66 changed the nonisothermal crystallization process of PPS. The maximum crystallization temperature of the PPS phase in the blend was higher that that of neat PPS, and this indicated that PA66 acted as a nucleus for PPS. Also, the compatibilizer poly(ethylene‐stat‐methacrylate) (EMA) was added to modify the interfacial interplay of the PA66/PPS blend system. The addition of EMA greatly influenced the nonisothermal crystallization process of the PPS phase in the blend system. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

14.
The morphology and mechanical properties of the in situ microfibrillar blend based on isotactic polypropylene (iPP) and poly (phenylene sulfide) (PPS) were examined. The microfibrillar PPS/iPP blend was prepared through a slit‐die extrusion, hot stretching, and water quenching process. Morphological observation indicated that the well‐defined PPS microfibrils were achieved by the method used in this study, which provided a promising method for both PPS and PP recycling. The morphology study showed that the minimum diameter of PPS phase was independent of PPS concentration. The diameter of most PPS fibrils in the microfibrillar blend was unexpectedly comparable to that of the PPS particles in the common blend at the same PPS content. The tensile strength of microfibrillar blend was higher than that of common blend, indicating the mechanical enhancement of microfibrillar processing to the PPS/iPP blend. The tensile strength of the microfibrillar blend also increased with stretching. POLYM. ENG. SCI., 45:1303–1311, 2005. © 2005 Society of Plastics Engineers  相似文献   

15.
The morphology of nonisothermally crystallized poly(phenylene sulfide) (PPS) and its blend with poly (ether ether ketone) (PEEK) have been observed by polarized optical microscope (POM) equipped with a hot stage. The nonisothermal crystallization behavior of PPS and PEEK/PPS blend has also been investigated by differential scanning calorimetry (DSC). The maximum crystallization temperature for PEEK/PPS blend is about 15°C higher than that of neat PPS, and the crystallization rate, characterized by half crystallization time, of the PEEK/PPS blend is also higher than that of the neat PPS. These results indicate that the PEEK acts as an effective nucleation agent and greatly accelerates the crystallization rate of PPS. The Ozawa model was used to analyze the nonisothermal crystallization kinetics of PPS and its blends. The Avrami exponent values of neat PPS are higher than that of its blend, which shows that the presence of PEEK changed the nucleation type of PPS from homogeneous nucleation to heterogeneous nucleation. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

16.
将聚芳醚腈(PEN)与商用聚苯硫醚(PPS)按不同比例通过熔融共混制备系列合金材料。研究结果显示PEN与PPS有较好的相容性,共混合金的力学性能处于纯聚合物力学性能区间。通过流变研究表明PPS与PEN的共混物在剪切条件下,黏度较纯PEN树脂有明显降低,有效改善了后者的加工性能,合金的耐热性能较PPS树脂有大幅提高。  相似文献   

17.
The mechanical and tribological properties of 70 vol % PA66/30 vol % PPS blend filled with different content of polytetrafluoroethylene (PTFE) were studied in this paper. It was found that the addition of PTFE impairs the mechanical properties of PA66/PPS blend, but greatly increases the wear resistance and decreases the friction coefficient. When PTFE content exceeds 20 vol %, the friction coefficient of composite is minimum (0.15) and lower than that of pure PTFE under the same conditions (0.22). The lowest wear volume (0.44 mm3) is obtained with PA66/PPS/30 vol % PTFE composite, which decreased by 91% compared with unfilled PA66/PPS blend (4.99 mm3). The topography of transfer film and the elemental distribution were investigated by Scanning Electron Microscopy (SEM) and Energy Dispersive Spectrometer (EDS), respectively. Because of the characteristic crystalline structure, PTFE preferentially transferred to the steel ring surface and formed a thin, uniform and firmly adhered transfer layer, which reduced the ability of PA66/PPS blend to transfer and prevent the adhesion between the sample and the couterface. In addition, the superior lubrication of PTFE inhibited the frictional heat melting during sliding. All these aspects are close related to the friction and wear behavior of PA66/PPS/PTFE composite. Upon the addition of PTFE, thermal control of friction regime is not applicable to the PA66/PPS blend. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 969–977, 2006  相似文献   

18.
The morphology and nonisothermal crystallization behavior of blends made of poly(phenylene sulfide) (PPS), with a amorphous polycarbonate (PC) were studied. The blend is found to be partially miscible by the dynamic mechanical thermal analysis (DMTA) and melt rheological measurements. The nonisothermal crystallization behavior of blend was studied by differential scanning calorimetry (DSC). The results show clearly that the crystallization temperatures of PPS component in the blend decrease with increasing of PC contents. The crystallization kinetics was then analyzed by Avrami, Jeziorny, and Ozawa methods. It can be concluded that the addition of PC decreases the PPS overall crystallization rate because of the higher viscosity of PC and/or partial miscibility of blend, despite of small heterogeneous nucleation effect by the PC phase and/or phase interface. The results of the activation energy obtained by Kissinger method further confirm that the amorphous PC in the partial miscible PPS/PC blend may act as a crystallization inhibitor of PPS. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

19.
The morphology of isothermally crystallized poly(phenylene sulfide) (PPS) and a blend combining it with high-impact polystyrene (HIPS) were observed through a polarized optical microscope equipped with a CSS450 hot-stage. The crystalline superstructure of PPS is mainly spherulite, and it was found that the presence of HIPS has little influence on the morphology of PPS, but decreases the nucleation rate of PPS. The effect of HIPS on the non-isothermal crystallization of PPS was investigated by differential scanning calorimetry (DSC). The maximum and onset crystallization temperatures for the HIPS/PPS blend were about 10°C lower than those of neat PPS, which indicates that the crystallization of PPS was retarded by HIPS. The Ozawa model was used to analyze the non-isothermal crystallization kinetics of PPS and its blends. The Avrami exponent values of neat PPS were higher than those of its blend, which shows that the presence of HIPS changed both the nucleation rate and the crystallization rate of PPS.  相似文献   

20.
Based on previous work, 70 vol % PA66/30 vol % PPS blend was selected as a matrix, and the PA66/PPS blend reinforced with different content of glass fiber (GF) was prepared in this study. The mechanical properties of PA66/PPS/GF composites were studied, and the tribological behaviors were tested on block‐on‐ring sliding wear tester. The results showed that 20–30 vol % GF greatly increases the mechanical properties of PA66/PPS blend. When GF content is 20 vol %, the friction coefficient of composite is the lowest (0.35), which is decreased by 47% in comparison with the unfilled blend. The wear volume of the GF‐reinforced PA66/PPS blend composite decreases with the increase of GF content. However, the wear‐resistance is not apparently improved by the addition of GF in the experimental range for comparison with unfilled PA66/PPS blend. The worn surface and the transfer film on the counterface were examined by scanning electron microscopy (SEM). The observations revealed that the friction coefficient of composite depends on the formation and development of a transfer film. The wear mechanism involves polymer matrix wear and fiber wear. The former consists of melting wear and plastic deformation of the matrix, while the latter includes fiber sliding wear, cracking, rupturing, and pulverizing. The contributions of the matrix wear and the fiber wear determine the ultimate wear volume of PA66/PPS/GF composite. In addition, the abrasive action caused by the ruptured glass fiber is also a very important factor. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 523–529, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号