首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
The drug-resistant leukemic cell lines, CEM/VLB100 and K/DAU600, are more sensitive to tumor necrosis factor alpha (TNFalpha)-mediated cytotoxicity compared with their parental cell lines, CCRF-CEM and K562 cl.6. Drug-resistant leukemic cell lines have more active mitochondrial function, which is associated with a greater susceptibility to TNFalpha-induced respiratory inhibition. TNFalpha blocked electron transfer at three sites, NADH dehydrogenase (complex I), succinate dehydrogenase (complex II), and cytochrome c oxidase (complex IV). Respiratory rate and electron transport chain enzyme activities were significantly inhibited in the drug-resistant, TNF-sensitive cell lines. Respiratory inhibition preceded cell death by at least 5 to 8 hours. The respiratory failure was not compensated for by appropriate up-regulation of the glycolytic pathway. Increasing mitochondrial respiratory rate and enzyme activities by long-term culture with 2 mmol/L adenosine 5'-diphosphate (ADP) and Pi sensitized both drug-sensitive and drug-resistant cells to TNFalpha-induced cytolysis. Intramitochondrial free radicals generated by paraquat only had a limited and delayed effect on respiratory inhibition and cytolysis in comparison with the effect of TNFalpha. We conclude that TNFalpha-induced cytotoxicity in leukemic cells is, at least in part, mediated by inhibition of mitochondrial respiration. Free radical generation by TNFalpha may not directly lead to the observed inhibition of the mitochondrial electron transport and other mechanisms must be involved.  相似文献   

2.
Previous work suggested a deficiency in the terminal complex of the mitochondrial electron transport chain, cytochrome c oxidase (COX), in platelet mitochondria of Alzheimer's disease (AD) patients. The present study extends this observation to AD brain mitochondria through assay of electron transport chain activities in mitochondria isolated from autopsied brain samples from AD patients (n = 9) and from controls with and without known neurologic disease (n = 8). AD brain mitochondria demonstrated a generalized depression of activity of all electron transport chain complexes. This depression was most marked in COX activity (p < 0.001). Concentrations of cytochromes b, c1, and aa3 were similar in AD and controls. The electron transport chain is defective in AD brain, and the defect centers about COX.  相似文献   

3.
Mitochondrial DNA from two genetically unrelated patients carrying the mutation at position 11778 that causes Leber's hereditary optic neuropathy has been transferred with mitochondria into human mtDNA-less rho0206 cells. As analyzed in several transmitochondrial cell lines thus obtained, the mutation, which is in the gene encoding subunit ND4 of the respiratory chain NADH dehydrogenase (ND), did not affect the synthesis, size, or stability of ND4, nor its incorporation into the enzyme complex. However, NADH dehydrogenase-dependent respiration, as measured in digitonin-permeabilized cells, was specifically decreased by approximately 40% in cells carrying the mutation. This decrease, which was significant at the 99.99% confidence level, was correlated with a significantly reduced ability of the mutant cells to grow in a medium containing galactose instead of glucose, indicating a clear impairment in their oxidative phosphorylation capacity. On the contrary, no decrease in rotenone-sensitive NADH dehydrogenase activity, using a water-soluble ubiquinone analogue as electron acceptor, was detected in disrupted mitochondrial membranes. This is the first cellular model exhibiting in a foreign nuclear background mitochondrial DNA-linked biochemical defects underlying the optic neuropathy phenotype.  相似文献   

4.
Normal human diploid fibroblasts have a finite replicative lifespan in vitro, which has been postulated to be a cellular manifestation of aging in vivo. Several studies have shown an inverse relationship between donor age and fibroblast culture replicative lifespan; however, in all cases, the correlation was weak, and, with few exceptions, the health status of the donors was unknown. We have determined the replicative lifespans of 124 skin fibroblast cell lines established from donors of different ages as part of the Baltimore Longitudinal Study of Aging. All of the donors were medically examined and were declared "healthy," according to Baltimore Longitudinal Study of Aging protocols, at the time the biopsies were taken. Both long- and short-lived cell lines were observed in all age groups, but no significant correlation between the proliferative potential of the cell lines and donor age was found. A comparison of multiple cell lines established from the same donors at different ages also failed to reveal any significant trends between proliferative potential and donor age. The rate of [3H]thymidine incorporation and the initial rates of growth during the first few subcultivations were examined in a subset of cell lines and were found to be significantly greater in fetal lines than in postnatal lines. Cell lines established from adults did not vary significantly either in initial growth rate or in [3H]thymidine incorporation. These results clearly indicate that, if health status and biopsy conditions are controlled, the replicative lifespan of fibroblasts in culture does not correlate with donor age.  相似文献   

5.
6.
Detailed respiration studies on isolated liver mitochondria from streptozotocin-induced diabetic Sprague-Dawley rats revealed a disease-associated decrease in the ADP/O ratio, a marker for mitochondrial ability to couple the consumption of oxygen to the phosphorylation of ADP. This decrease was observed following induction of respiration with glutamate/malate, succinate, or duroquinol, which enter the electron transport chain selectively at complexes I (NADH dehydrogenase), II (succinate dehydrogenase), or III (cytochrome bc1 complex), respectively. These data, coupled with studies using respiratory inhibitors (most importantly antimycin A and myxothiazol), localize at least a portion of this defect to a single site within the electron transport chain (center P in the Q-cycle portion of complex III). These results suggest that liver mitochondria from diabetic animals may generate increased levels of reactive oxygen species at the portion of the electron transport chain already established as the major site of mitochondrial free radical generation. The reduction in the ADP/O ratio occurred in mitochondria that do not have overt defects in the respiratory control ratio or in State 3 and State 4 respiration. The data in this paper suggest that defects in center P of the electron transport chain likely increase mitochondrial exposure to oxidants in the diabetic. This data may partially explain the evidence of altered exposure and/or response to reactive species in mitochondria from diabetics. This work thus provides further clues to the interaction between oxidative stress and diabetes-associated mitochondrial dysfunction.  相似文献   

7.
8.
9.
The murine brain fatty acid binding protein (B-FABP) is encoded by a developmentally regulated gene that is expressed in radial glial cells and immature astrocytes. We have cloned the human B-FABP gene and have mapped it to chromosome 6q22-23. We show that B-FABP mRNA is expressed in human malignant glioma tumor biopsies and in a subset of malignant glioma cell lines, as well as in human fetal retina and brain. Malignant glioma tumors are characterized by cytoplasmic bundles of glial fibrillary acidic protein (GFAP), a protein normally expressed in mature astrocytes. Establishment of malignant glioma cell lines often results in loss of GFAP. The subset of malignant glioma cell lines that express GFAP mRNA also express B-FABP mRNA. Co-localization experiments in cell lines indicate that the same cells produce both GFAP and B-FABP. We suggest that some malignant gliomas may be derived from astrocytic precursor cells which can express proteins that are normally produced at different developmental stages in the astrocytic differentiation pathway.  相似文献   

10.
11.
We report a boy 20 months of age with encephalopathy, petechiae, and ethylmalonic aciduria (EPEMA). Other clinical features were severe hypotonia, orthostatic acrocyanosis, and chronic diarrhea. Magnetic resonance imaging (MRI) of the brain demonstrated bilateral lesions in the lenticular and caudate nuclei, periaqueductal region, subcortical areas, white matter, and brainstem. Short and medium chain Acyl-CoA dehydrogenase and cytochrome c oxidase (COX) activities in fibroblasts were normal. Muscle histochemistry disclosed diffuse COX deficiency, and respiratory chain activities in muscle disclosed severe COX deficiency. Twelve other patients with similar clinical features have been reported. Muscle COX activity, studied only in four, demonstrated a clear-cut defect.  相似文献   

12.
The pathogenetic mechanism of the deafness-associated mitochondrial DNA (mtDNA) T7445C mutation has been investigated in several lymphoblastoid cell lines from members of a New Zealand pedigree exhibiting the mutation in homoplasmic form and from control individuals. We show here that the mutation flanks the 3' end of the tRNASer(UCN) gene sequence and affects the rate but not the sites of processing of the tRNA precursor. This causes an average reduction of approximately 70% in the tRNASer(UCN) level and a decrease of approximately 45% in protein synthesis rate in the cell lines analyzed. The data show a sharp threshold in the capacity of tRNASer(UCN) to support the wild-type protein synthesis rate, which corresponds to approximately 40% of the control level of this tRNA. Strikingly, a 7445 mutation-associated marked reduction has been observed in the level of the mRNA for the NADH dehydrogenase (complex I) ND6 subunit gene, which is located approximately 7 kbp upstream and is cotranscribed with the tRNASer(UCN) gene, with strong evidence pointing to a mechanistic link with the tRNA precursor processing defect. Such reduction significantly affects the rate of synthesis of the ND6 subunit and plays a determinant role in the deafness-associated respiratory phenotype of the mutant cell lines. In particular, it accounts for their specific, very significant decrease in glutamate- or malate-dependent O2 consumption. Furthermore, several homoplasmic mtDNA mutations affecting subunits of NADH dehydrogenase may play a synergistic role in the establishment of the respiratory phenotype of the mutant cells.  相似文献   

13.
Cell-free extracts of Methanobacterium thermoautotrophicum were found to contain high activities of the following oxidoreductases (at 60 degrees C): pyruvate dehydrogenase (coenzyme A acetylating), 275 nmol/min per mg of protein; alpha-ketoglutarate dehydrogenase (coenzyme A acylating), 100 nmol/min per mg; fumarate reductase, 360 nmol/min per mg; malate dehydrogenase, 240 nmol/min per mg; and glyceraldehyde-3-phosphate dehydrogenase, 100 nmol/min per mg. The kinetic properties (apparent V(max) and K(M) values), pH optimum, temperature dependence of the rate, and specificity for electron acceptors/donors of the different oxidoreductases were examined. Pyruvate dehydrogenase and alpha-ketoglutarate dehydrogenase were shown to be two separate enzymes specific for factor 420 rather than for nicotinamide adenine dinucleotide (NAD), NADP, or ferredoxin as the electron acceptor. Both activities catalyzed the reduction of methyl viologen with the respective alpha-ketoacid and a coenzyme A-dependent exchange between the carboxyl group of the alpha-ketoacid and CO(2). The data indicate that the two enzymes are similar to pyruvate synthase and alpha-ketoglutarate synthase, respectively. Fumarate reductase was found in the soluble cell fraction. This enzyme activity coupled with reduced benzyl viologen as the electron donor, but reduced factor 420, NADH, or NADPH was not effective. The cells did not contain menaquinone, thus excluding this compound as the physiological electron donor for fumarate reduction. NAD was the preferred coenzyme for malate dehydrogenase, whereas NADP was preferred for glyceraldehyde-3-phosphate dehydrogenase. The organism also possessed a factor 420-dependent hydrogenase and a factor 420-linked NADP reductase. The involvement of the described oxidoreductases in cell carbon synthesis is discussed.  相似文献   

14.
15.
16.
17.
With the aim of identifying the gene(s) located downstream from SRY, we transfected an ES cell line with XX karyotype, TMA-18, with a Sry DNA construct and established cell lines, TS18-1 and TS18-2, where the transfected Sry was expressed in the functional linear mRNA form. Among the five potential SRY-target genes examined, i.e., MIS, SF1, P450arom, Sox9 and WT1, only the expression of WT1 was induced de novo by the unscheduled expression of Sry in the transfected cell lines. No clear indication of Sry-induced enhancement of Sox9 expression was obtained in the present series of experiments. Function of a yet unidentified gene(s) located on the Y chromosome might be needed for the up-regulation of Sox 9 expression which takes place during the development of male gonads. Quantitative RT-PCR analysis of the patterns of WT1 expression in developing fetal gonads revealed that although both male and female fetal gonads express WT1, male gonads invariably expressed WT1 mRNA at higher levels than female ones after the Sry expression. Immunohistochemical analysis of the male fetal gonads between 10.5 and 13.5 dpc demonstrated the presence of strong WT1 immunoreactivity in Sertoli cells of the primordial testes. Suggestions were made in the past indicating that both SF1 and WT1 proteins might be active in a common pathway upstream from Sry. Our results showed that WT1 is located downstream, rather than upstream from Sry and behaves independently from SF1. Analysis using an appropriate in vitro system will be essential to understand the molecular mechanisms of SRY action within cells.  相似文献   

18.
The mechanism of farnesol (FOH)-induced growth inhibition of Saccharomyces cerevisiae was studied in terms of its promotive effect on generation of reactive oxygen species (ROS). The level of ROS generation in FOH-treated cells increased five- to eightfold upon the initial 30-min incubation, while cells treated with other isoprenoid compounds, like geraniol, geranylgeraniol, and squalene, showed no ROS-generating response. The dependence of FOH-induced growth inhibition on such an oxidative stress was confirmed by the protection against such growth inhibition in the presence of an antioxidant such as alpha-tocopherol, probucol, or N-acetylcysteine. FOH could accelerate ROS generation only in cells of the wild-type grande strain, not in those of the respiration-deficient petite mutant ([rho0]), which illustrates the role of the mitochondrial electron transport chain as its origin. Among the respiratory chain inhibitors, ROS generation could be effectively eliminated with myxothiazol, which inhibits oxidation of ubiquinol to the ubisemiquinone radical by the Rieske iron-sulfur center of complex III, but not with antimycin A, an inhibitor of electron transport that is functional in further oxidation of the ubisemiquinone radical to ubiquinone in the Q cycle of complex III. Cellular oxygen consumption was inhibited immediately upon extracellular addition of FOH, whereas FOH and its possible metabolites failed to directly inhibit any oxidase activities detected with the isolated mitochondrial preparation. A protein kinase C (PKC)-dependent mechanism was suggested to exist in the inhibition of mitochondrial electron transport since FOH-induced ROS generation could be effectively eliminated with a membrane-permeable diacylglycerol analog which can activate PKC. The present study supports the idea that FOH inhibits the ability of the electron transport chain to accelerate ROS production via interference with a phosphatidylinositol type of signal.  相似文献   

19.
Short-chain ubiquinone analogues act as electron acceptors and as inhibitors in the lymphoblast mitochondria of ND1/3460 mutants, which indicates structural changes in the ubiquinone-binding domain of Complex I in this mutant. The ND4/11778 mutant and two secondary ND5 mutants studied are associated with reductions of at least 50, 35 and 30% in the catalytic rate constant, respectively. However, the efficiency of oxidative phosphorylation is unaffected in all these ND mutants. The rate of respiration is only slightly limited by Complex I in lymphoblast mitochondria. Consequently, there is a 30-35% reduction in the electron flow through Complex I compared with that through Complex II, and an increased lactate/pyruvate ratio, in the ND1 and ND4 mutants, but these factors were unaffected in the secondary ND5 mutants. Energy metabolism is thus less severely affected in the secondary mutants than in the primary mutants, which supports the division into these two categories. An increased ubiquinone-10 content in the mitochondrial membrane of all the mutants, and enhanced succinate dehydrogenase and citrate synthase activities in the ND4 mutant, are proposed to be compensatory changes. The efficiency of these changes and the level of kinetic limitation of respiration by Complex I in each tissue are proposed to determine the clinical development of the disease.  相似文献   

20.
Activation and infection by HIV-1 of glial cells and infiltrating macrophages are cardinal features of AIDS-related neurological disease. Tumor necrosis factor-alpha (TNF-alpha) is released by these cell types, and increased TNF-alpha mRNA and protein levels are associated with the development and severity of HIV-induced neurological disease. HIV-1 proteins have been implicated in HIV neuropathogenesis including Tat which has been shown to be a potent inducer of TNF-alpha. We review our data showing the induction of TNF-alpha by Tat in primary human fetal astrocytes, human peripheral blood mononuclear cells, macrophages, and astrocytic and macrophage cell lines. TNF-alpha induction was NF-kappaB dependent and was eliminated by inhibiting protein kinase A, phospholipase C and protein tyrosine kinase activity. In addition, we examined the molecular diversity of the tat genome in the brains of HIV-infected patients from different HIV-1 clades. Comparison of matched brain- and spleen-derived tat sequences indicated that homology among brain-derived clones was greater than that between the brain- and spleen-derived clones. The brain-derived tat sequences were markedly heterogeneous in regions which influence viral replication and intracellular transport. Future studies using Tat, encoded by different sequences, will be necessary to determine the functional significance of tat molecular diversity. Nonetheless, these studies suggest that Tat is an important inducer of TNF-alpha production and thus may play a key role in the pathogenesis of HIV-related neurological disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号