首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gamma (γ) iron oxide thin films containing 6 at% of cobalt atoms selectively dispersed at interstitial and octahedral locations have been prepared by a reactive chemical vapour deposition process. Such dispersion gives microscopic Co-trapped and Co-doped regions inγ-Fe2O3 matrix and introduces magnetocrystalline anisotropy leading to high coercivity values of 64–112 kA/m. Temperature dependence of coercivity and saturation magnetization forγ-Fe2O3 films confirm the dispersion model. Paper presented at the poster session of MRSI AGM VI, Kharagpur, 1995  相似文献   

2.
Acicular FeC2O4 · 2H2O was precipitated from glycerol and starch media. Thermal decomposition of this oxalate in dry and moist nitrogen yielded primarily FeO and Fe3O4 respectively. Characterization was attempted through DTA, TG, x-ray diffraction, TEM and magnetization studies. It was found that the oxalate can be completely decomposed to Fe3O4 in moist nitrogen (PH 2O ∼ 35 torr) at 775 K and then oxidised by dry air to acicular γ-Fe2O3 at 575 K. The resulting material has saturation magnetization (∼ 70 emu/g), coercive field (∼ 300 Oe) and squareness ratio (∼ 0·60–0·65), which values art comparable with those of the commercial samples.  相似文献   

3.
Nanocomposites with magnetic components possessing nanometric dimensions, lying in the range 1–10 nm, are found to be exhibiting superior physical properties with respect to their coarser sized counterparts. Magnetic nanocomposites based on gamma iron oxide embedded in a polymer matrix have been prepared and characterized. The behaviour of these samples at low temperatures have been studied using Mössbauer spectroscopy. Mössbauer studies indicate that the composites consist of very fine particles of γ-Fe2O3 of which some amount exists in the superparamagnetic phase. The cycling of the preparative conditions were found to increase the amount of γ-Fe2O3 in the matrix.  相似文献   

4.
This paper reports the electrical and spectroscopic investigation of the gamma ferrite synthesized through combustion route. The electrical study and dielectric behaviour showed a typical ferrite nature for the samples. The γ → α transition is observed from the electrical conductivity data. Infrared spectral study showed the transition of a typical ferrite. The effect of the presence of α-impurities in γ-Fe2O3 is also explained here.  相似文献   

5.
Jiahai Bai 《Materials Letters》2009,63(17):1485-1488
Novel cobalt oxide doped ZnFe2O4-Fe2O3-ZnO mixed oxides with the Zn/Fe molar ratio of 1/2 were synthesized with a citric acid complex method. The effects of cobalt oxide and calcination temperature on phase composition and photocatalytic activity of the mixed oxides were investigated. X-ray diffraction (XRD) analysis revealed that there were mainly ZnFe2O4, α-Fe2O3, amorphous ZnO and Fe2O3 in the 6 mol% cobalt oxide doped products calcined at 500 °C. 5-10 mol% cobalt oxide doping could significantly enhance the formation of ZnFe2O4 and altered the phase composition of the mixed oxides. Experimental results showed that cobalt oxide doping could remarkably improve the photocatalytic activity of the mixed oxides for phenol degradation. The 6 mol% cobalt oxide doped mixed oxides calcined at 500 °C exhibited better photocatalytic activity as compared with other samples.  相似文献   

6.
A new combustion route for the synthesis of γ-Fe 2 O 3 is reported by employing purified a-Fe 2 O 3 as a precursor in the present investigation. This synthesis which is similar to a self propagation combustion reaction, involves fewer steps, a shorter overall processing time, is a low energy reaction without the need of any explosives, and also the reaction is completed in a single step yielding magnetic iron oxide i.e. γ-Fe 2 O 3 .The as synthesized γ-Fe 2 O 3 is characterized employing thermal, XRD, SEM, magnetic hysteresis, and density measurements. The effect of ball-milling on magnetic properties is also presented.  相似文献   

7.
Chang-Woo Lee  Ki-Woo Lee  Jai-Sung Lee   《Materials Letters》2008,62(17-18):2664-2666
The effect of hollow structure on the optoelectronic properties of β-Fe2O3 hollow nanoparticles (HNPs) was determined. Spectrophotometry showed that the optical transmittance of the β-Fe2O3 HNPs was less than 40% in the visible-light region. This opaqueness was suggested to be an optical characteristic, commonly found in the authors' previous studies of TiO2 and δ-Al2O3 HNPs. In addition, β-Fe2O3 HNPs had a band gap (1.86 eV) between amorphous (1.73 eV) and polycrystalline (1.97 eV) β-Fe2O3 thin films, which was a 5–7 nm thick shell that embraced an intermediate volume of the crystal phase, in-between the two thin films.  相似文献   

8.
Elliptical-type α-Fe2O3 nanoparticles with/without silica shell have been prepared. The core particles were coated with uniform continuous layers of silica of two different thicknesses by hydrolysis of TEOS. The obtained HCP structure elliptical α-Fe2O3 nanoparticles with ∼ 240 nm length and 100 nm width is polycrystalline in nature. The thicknesses of SiO2 shell coated on α-Fe2O3 are about 55 and 30 nm, respectively. The optical and magnetic properties of these nanoparticles have been investigated.  相似文献   

9.
Ruipeng Fu 《Materials Letters》2008,62(25):4066-4068
γ-Fe2O3/ZnO composite particles were prepared via a simple solution method using surface-modified γ-Fe2O3 nanoparticles as seeds. The phases and purity of the as-prepared γ-Fe2O3/ZnO composite particles were characterized by XRD analysis, and the morphology was studied by SEM, which showed that the γ-Fe2O3/ZnO composites are of typical sphere-like morphology with diameters in the range of 300-400 nm. The γ-Fe2O3/ZnO composites exhibit magnetic response to an external magnet field and efficient characteristic emissions of ZnO under UV excitation, respectively, indicating that these nontoxic, emissive and magnetic nanoparticles may find use as chemical/biological sensors especially in areas that directly impact human health.  相似文献   

10.
Magnetic γ-Fe2O3/activated carbon microspheres have been synthesized by an activation process of carbon microspheres containing iron oxides, which were prepared by hydrothermal method. The structure and morphology of the magnetic porous carbon microspheres were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), vibrating sample magnetometer (VSM), thermogravimetry and differential thermal analysis (TG-DTA) and N2 adsorption-desorption technique. The results showed that the as-prepared activated carbon spheres were the composite of single-phase γ-Fe2O3 and activated carbon material, and the content of carbon was about 3.87%. Using methyl orange as model pollutant, the magnetic porous carbon microspheres showed good adsorption capacities of 44.65 mg/g. The isotherm evaluations revealed that the Langmuir model attained better fits to the experimental equilibrium data than the Freundlich model. These magnetic porous carbon microspheres could potentially be applied in separation processes.  相似文献   

11.
γ-Fe2O3 nanowire arrays embedded in anodic alumina template were fabricated by an improved sol–gel method. The morphologies, structures and magnetic behaviour of the as-prepared products were investigated by X-ray powder diffraction, transmission electron microscopy, selected area electron diffraction, field emission scanning electron microscopy and magnetic hysteresis analysis. The results show that arrayed γ-Fe2O3 polycrystalline nanowires with an average diameter about 40?nm and an average length about 0.5?µm were prepared. A number of superparamagnetic nanoneedles grew along the nanowires. The ordered one-dimensional arrays weaken the superparamagnetic effect. In addition, a possible formation mechanism about nanowires is proposed. The charge factor, gravity effect and molecular heat movement impelled the Fe sols filling into the pores of the template. γ-Fe2O3 nanowire arrays look forward to the applications of magnetic recording in the future.  相似文献   

12.
The effects of laser irradiation on γ-Fe2O3 4 ± 1 nm diameter maghemite nanocrystals synthesized by co-precipitation and dispersed into an amorphous silica matrix by sol-gel methods have been investigated as function of iron oxide mass fraction. The structural properties of γ-Fe2O3 phase were carefully examined by X-ray diffraction and transmission electron microscopy. It has been shown that γ-Fe2O3 nanocrystals are isolated from each other and uniformly dispersed in silica matrix. The phase stability of maghemite nanocrystals was examined in situ under laser irradiation by Raman spectroscopy and compared with that resulting from heat treatment by X-ray diffraction. It was concluded that ε-Fe2O3 is an intermediate phase between γ-Fe2O3 and α-Fe2O3 and a series of distinct Raman vibrational bands were identified with the ε-Fe2O3 phase. The structural transformation of γ-Fe2O3 into α-Fe2O3 occurs either directly or via ε-Fe2O3, depending on the rate of nanocrystal agglomeration, the concentration of iron oxide in the nanocomposite and the properties of silica matrix. A phase diagram is established as a function of laser power density and concentration.  相似文献   

13.
ABSTRACT

In the present study, PMMA/PE-?-Fe2O3 nanocomposites of various compositions were produced through ultrasound-assisted technique. Thermogravimetric analysis and UV-visible results indicated that the thermal stability is enhanced distinctly, without a sacrifice in optical clarity. The improvement of thermal properties was attributed to the homogeneous and good dispersion of ?-Fe2O3 nanoparticles in PMMA/PE/?-Fe2O3. And the excellent thermal properties performance of the ?-Fe2O3 fillers improved the tribological properties of PMMA/PE composites.  相似文献   

14.
In this study, various α-Fe2O3 (hematite) nanostructures were prepared on Fe foils by sonoelectrochemical anodization method. The principal component of the electrolyte was ethylene glycol contained 0.3 wt.% NH4F. The α-Fe2O3 surface shapes have been controlled by varying the water volume ratios (WVR) in electrolyte solution. The α-Fe2O3 samples were characterized by field emission scanning electron microscopy, energy-dispersive x-ray spectroscopy, grazing incidence x-ray diffraction, and UV-vis absorbance spectra. As the variation of WVR, the α-Fe2O3 samples showed different surface morphologies of nanoparticles, nanorods, nanoporous, and nanoleaflets. The visible light photocatalytic activity of the α-Fe2O3 nanostructures was investigated by degradation of methylene blue, and the α-Fe2O3 nanoporous sample showed the best photocatalytic performance.  相似文献   

15.
Lifeng Cui 《Materials Letters》2009,63(28):2499-2502
Novel MnCO3/α-Fe2O3 nanocrystal heterostructures, with MnCO3 nanorods 5-10 nm in diameter and 15-50 nm in length, grown onto the surfaces of the α-Fe2O3 nanohexahedrons sized around 30-50 nm, were fabricated via a two-step solvothermal route. The coalescent planes of the heterostructure for the MnCO3 nanorod and the α-Fe2O3 nanohexahedron were determined to be (01?4) and (110), respectively. The formation of the MnCO3 nanorods from the Mn contained amorphous flakes was tracked by transmission electron microscopy observations at various reaction stages, which suggested a rolling-broken-growth process. Evidenced by the comparative experimental result, the α-Fe2O3 nanohexahedrons played an important role in inducing the nucleation and growth of the hexagonal MnCO3 nanorods on their surfaces.  相似文献   

16.
Hollow α-Fe2O3 irregular microspheres were prepared at 160 °C from a hydrolyzing Fe(ClO4)3 solution by adding sodium polyanethol sulphonate. The particles were characterized by 57Fe Mössbauer, X-ray diffraction, Fourier transform infrared spectroscopy, field emission scanning electron microscopy and energy dispersive X-ray spectroscopy. The walls of these hollow particles consisted of elongated subunits composed of elongated and thin α-Fe2O3 rods. The precipitation of hollow α-Fe2O3 irregular microspheres was governed by the preferential adsorption of sulphonate/sulphate groups. The lateral aggregation of elongated thin rods and subunits also played an important role in the formation of hollow α-Fe2O3 irregular microspheres.  相似文献   

17.
Alpha iron oxide (α-Fe2O3) films were grown on catalyst-free silicon substrate using a vertical type metal-organic chemical vapor deposition process. X-ray powder diffraction and field-emission transmission electron microscopy measurements showed that these α-Fe2O3 films consisted of bundles of one dimensional (1D) nanorods and the nanorods in these α-Fe2O3 films were single crystalline with a well-ordered rhombohedral structure. The nanorods showed a preferred growth orientation in the [104] direction. Magnetic force microscopy image suggests that spin domains were formed in the α-Fe2O3 nanorods. Photo-catalytic property of these nanorod films was confirmed through the photo-degradation of Rhodamine B by UV irradiation. These α-Fe2O3 film/nanorod materials could be used as building blocks for nanodevice applications.  相似文献   

18.
Monodisperse α-Fe2O3 nanoparticles have been successfully prepared by hydrothermal synthetic route using FeCl3, CH3COONa as reagents and reacted at 200 °C for 12 h. The morphology and structure of products were characterized by powder X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The results showed that the α-Fe2O3 nanoparticles were single-crystalline hexagonal structure and average diameters were about 80 nm. Magnetic properties have been detected by a vibrating sample magnetometer at room temperature. The nanoparticles exhibited a ferromagnetic behavior with the coercive force (Hc), saturation magnetization (Ms) and remanent magnetization (Mr) was 185.28 Oe and 0.494 emu/g, 0.077 emu/g.  相似文献   

19.
Nanostructured thin films of α-Fe2O3 were prepared through atmospheric chemical vapour deposition (APCVD) using ferrocene and iron pentacarbonyl as precursors. Higher optical absorption was observed for hematite films prepared using ferrocene, which was attributed to the higher packing density. Photoelectrochemical (PEC) studies of the films prepared using ferrocene showed superior performance to that of iron pentacarbonyl. Photocurrent density of 540 µA/cm2 and 1.5 µA/cm2 at 1.23 VRHE was achieved for hematite films prepared using ferrocene and iron pentacarbonyl, respectively. Our findings suggest that ferrocene can be used as a promising alternative to iron pentacarbonyl to prepare hematite photoelectrodes using APCVD.  相似文献   

20.
Solid adsorbents have shown great promise for control of particulate and non-particulate matter and as gas sensing devices in recent times. In the present study, adsorption of environmental toxic pollutant such as lead ions on solid adsorbents viz. α-Fe2O3 and fly ash, are reported. Considerable adsorption was observed on fly ash when compared to α-Fe2O3 surface. These studies are characterized by employing solid state and solution studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号