共查询到20条相似文献,搜索用时 78 毫秒
1.
为有效地对工厂化水产养殖进行指导和管理,解决实际生产中水温数据预测精度低、稳定性差等问题,在分析水温影响因素的基础上,通过天气指数的计算对传感器采集的异常数据进行校正,进而提出一种遗传算法(GA)结合改进极限学习机(ELM)的池塘水温预测模型(GA-ELM)。在模型建立的过程中,采用Softplus对传统ELM的激活函数进行改进,在GA算法获取ELM最佳初始权值和偏置参数的基础上,对实现数据校正的池塘水温数据进行预测。将GA-ELM与BP神经网络和标准ELM网络模型进行对比,GA-ELM的预测指标MAE、MAPE和RMSE分别为0.1543、0.0054和0.1876,实验结果表明,GA-ELM模型有较好的预测性能,能高效、稳定地实现水温的预测。 相似文献
2.
针对股票价格预测中应用极限学习机预测存在稳定性不理想的问题,提出了一种改进果蝇优化极限学习机(IFOA-ELM)预测模型的算法。在该算法中,果蝇群通过不断调整群半径来优化ELM的输入层与隐含层连接权值和隐含层阈值,并以优化后的结果为基础,构建ELM预测模型。将IFOA-ELM模型用于股票价格预测。实验表明,与ELM和FOA-ELM相比,IFOA-ELM在股票价格预测中具有更高的预测精度和更好的稳定性。 相似文献
4.
针对采用传统算法建立煤矿突水预测模型存在训练速度慢、泛化能力差、测试精度不高等问题,提出了一种将PCA与ELM相结合的煤矿突水预测方法,并利用该方法建立了煤矿突水预测模型。该方法以煤矿突水历史数据为样本,利用PCA得到煤矿突水主控因素,将仅包含主控因素的样本数据划分为训练集、验证集和测试集;然后把训练样本作为ELM的输入,对模型进行训练;最后利用样本数据验证模型。实验结果表明,相较于传统算法,该方法输入变量少,建模和运算时间短,模型的运行速度和预测精度较高。 相似文献
6.
针对较强噪声环境下的滚动轴承故障预测问题,为提高轴承故障预测的精度,提出并研究了一种新的滚动轴承预测技术;采用将灰色模型和极限学习机(ELM)相结合的方法,针对轴承运行状态值的非线性特点,先将样本数据进行灰色处理,解决数据的随机性和波动性问题,然后代入学习速度快,泛化精度高的ELM神经网络进行训练;在训练完毕后,对未来的轴承运行状态数据进行分析,将其与轴承设备的理论诊断标准相比较以达到故障预测的目的。 相似文献
7.
为了在嵌入式ARM11平台中更好地实现航空发动机传感器故障监测与诊断,使用极限学习机( ELM)代替传统的BP网络算法,只需选定隐含层节点数和激活函数,大大减少了BP算法中人为设置大量参数、训练过程慢,并需要不断调整网络参数以及容易陷入局部最优解的缺点。经过仿真验证对比两种算法,验证ELM算法的优越性。并使用C++编程语言将ELM算法转换成航空发动机传感器故障诊断训练学习软件和诊断软件,经最终测试,该算法软件的测试精度良好,满足诊断需求。 相似文献
8.
针对住宅需求预测受到不同方面因素的影响且具有非线性特征等问题,本文在原始邻域粗糙集(NRS)的基础上进行改进,并与极限学习机(ELM)相结合来进行预测.首先改进算法(MNRS)解决了原始NRS无法在不同条件属性之间设定最佳邻域值的问题,根据不同条件属性的邻域半径和标准差构建邻域关系矩阵;然后在输出属性重要度排序时引入Pearson相关系数,克服了条件属性之间的影响,获得最小冗余属性的约简集构成住宅需求预测指标体系;最后将构建的住宅需求指标体系输入极限学习机模型,得到准确的预测值.实验结果表明:MNRS-ELM预测模型不仅有效降低了运算复杂度,而且能够获得更高的预测精度. 相似文献
9.
为提高CART(ClassificationAndRegressionTree)决策树回归算法的准确性,提出一种基于ELM(Extreme Learning Machine)的改进CART决策树回归算法——ELM-CART算法.所提算法主要是在CART回归树创建过程中,在每个叶节点使用极限学习机建模,可以得到真正意义上... 相似文献
10.
为了提高船舶交通流预测的效率和准确率,分析了船舶流量预测中的影响因素多、非线性、随机性等问题,建立了ELM(极限学习机)预测模型。同时为了避免极限学习机算法受输入权值矩阵和隐含层偏差随机性的影响,算法又采用GA(遗传算法)对极限学习机的输入权值矩阵和隐含层偏差进行优化,建立GA-ELM船舶交通流预测模型。利用上海洋山港船舶流量对该模型进行了实例分析,通过MATLAB仿真进行预测,将GA-ELM模型与单纯的BP模型、ELM模型进行对比和分析,结果表明:GA-ELM模型具有更高的预测精度和效率,从而能够相对准确、高效地对船舶交通流量进行预测。 相似文献
11.
针对BP 训练方式采用梯度法易导致局部收敛的不足, 提出一种融合进食粒子群算法(EPSO) 和梯度法的Elman 网络优化方法. 首先, 通过模拟鸟群进食行为得到一种EPSO 算法, 以改善标准PSO 的全局性能; 然后, 将EPSO 用于Elman 网络权值的全局优化, 同时将梯度法用于EPSO 的进食过程局部搜索, 以提高解的局部收敛性能; 最后, 将该网络优化方法用于飞行轨迹预测实验, 仿真结果表明了其有效性. 相似文献
12.
针对非线性时间序列, 提出一种基于多维泰勒网的时间序列预测方法. 其特点在于利用非线性时间序列的观测数据, 通过多维泰勒网得到?? 元一阶多项式差分方程组, 在无需待预测系统的任何先验知识和机理的情况下获得动力学特性描述, 实现对非线性时间序列的预测. 最后分别采用Lorenz 混沌时间序列, 以及某大型建筑在顶升施工安全性监测中的结构振动响应数据进行实证研究, 所得结果表明了该方法的有效性. 相似文献
13.
针对复杂环境下的多变量工业过程在线故障检测问题, 提出基于集成核主分量分析的解决方法. 该方法首先求出样本映射后的无限维空间的多组近似基, 将主分量分析问题特征向量的解空间限定在近似基张成空间求解; 然后集成特征向量和特征值, 并计算Hotelling ??2 统计量和平方预报误差; 最后据此判断检测结果. 该方法对Tennessee Eastman 过程故障检测样本进行测试, 并与其他两种方法进行对比. 测试结果表明了所提出方法的有效性. 相似文献
14.
为进一步提高传统极限学习机的泛化能力,提出了一种基于人工蜂群算法优化的极限学习机模型.该模型将人工蜂群算法的全局寻优能力和极限学习机的快速学习能力相结合,有效克服了传统极限学习机的过拟合现象.在确定水压变化比值作为故障特征参数的基础上,将优化后的极限学习机模型应用于供水管网的泄漏故障诊断实验,实验结果表明,经人工蜂群算法优化的极限学习机模型在故障诊断速度和精度方面均优于其他3种模型. 相似文献
15.
四相永磁容错电机采用被容错齿隔开的集中式绕组结构,本质上具有一定的容错能力和故障出现后连续运行的能力.针对H桥和星形这两种驱动拓扑结构,在发生单相绕组出线端部短路时,以容错控制后的转矩满足正常需求为目标,分别采用直接转矩补偿方法和旋转磁动势不变方法进行容错控制;对两种容错控制策略进行了推导和对比分析,并对相关结果进行了磁-路联合仿真计算,验证了理论分析的正确性. 相似文献
16.
针对极限学习机(ELM) 网络结构优化问题, 提出一种改进的灵敏度剪枝ELM(ImSAP-ELM). ImSAP-ELM 将??2 正则化因子引入SAP-ELM 中, 采用留一准则确定最优隐节点数. 推导基于奇异值分解的输出权重计算公式, 避免矩阵奇异导致求解无效的问题. 将ImSAP-ELM 用于故障预测, 利用多组同类型故障数据建立多个ImSAP-ELM 模型, 基于加权思想融合不同ImSAP-ELM 的预测值. 某型无人机发射机实例表明, 相比于ELM、OP-ELM (最优剪枝ELM) 和SAP-ELM, ImSAP-ELM 耗时最高, 但是ImSAP-ELM 的预测误差小于其他3 种方法. 相似文献
17.
针对软测量模型在实际应用中遇到的问题, 结合AdaBoost 集成学习思想, 提出适用于软测量回归的集成学习算法, 以提高传统软测量模型的精度. 为了克服模型更新技术对软测量实际应用的制约, 将增量学习机制加入软测量集成建模中, 使软测量模型具有在线实时更新的增量学习能力. 对浆纱过程使用新方法建立上浆率软测量模型, 并使用实际生产数据对模型进行检验, 检验结果表明, 该模型具有很好的预测精度, 并能够较好地实现在线更新. 相似文献
18.
针对传统回声状态网络(ESN) 难以解决多振荡子叠加(MSO) 问题, 提出一种增量式模块化回声状态网络(IM-ESN). 该网络储备池由多个相互独立的子储备池组成. 利用矩阵的奇异值分解(SVD) 构造每个子储备池的权值矩阵, 并依据分块对角矩阵原理, 将子储备池逐一添加至网络中. 在网络增长过程中, IM-ESN 无需放缩权值矩阵便能保证网络的状态回声特性. MSO 问题的仿真结果表明, IM-ESN 能够自主确定与问题复杂度相匹配的网络规模, 具有较好的预测性能和鲁棒性. 相似文献
19.
针对柔性作业车间生产环境中机器故障的动态调度问题, 以最小最大完工时间和最小偏差为目标, 结合车间调度人员的经验建立多阶段人机协同动态调度策略. 在不同阶段该策略的调度人员可参与优化过程, 提高方案的可行性和稳定性. 设计外部精英库中最优解的更新方法, 依据海明距离保留具有相同目标值的多种调度方案. 最后通过实例仿真验证了该模型和算法的有效性、可行性和稳定性, 更便于有效地指导生产实践. 相似文献
20.
传统单变量灰色预测模型的指数结构形式制约了其对小样本振荡序列的模拟与预测能力, 对此, 通过包络线将振荡序列拓展为具有明确上界与下界的区间灰数序列, 还原影响因素不确定性条件下振荡序列的区间灰数形式; 在此基础上, 利用区间灰数建模方法实现对振荡序列取值范围的模拟与预测. 应用该方法较好地模拟了具有振荡特征的重庆市空气质量指数(AQI) 的变化规律, 所得研究成果为小样本振荡序列的模拟与预测提供了一种新的分析方法与建模手段. 相似文献
|