共查询到18条相似文献,搜索用时 46 毫秒
1.
为了检测红外场景中尺寸大小变化的弱小目标,针对传统滤波方法中固定大小滤波核对此类特性目标检测表现出的不足,提出一种基于尺度空间理论的红外弱小目标检测方法。首先对弱小目标特性进行分析,提出采用点扩散函数形式的目标模型来描述弱小目标;采用固定自适应邻域的方法对原始红外图像进行预处理,抑制背景杂波,增强目标能量;依据尺度规范化后的拉普拉斯尺度空间对图像不同元素滤波响应的不同,获取图像中的可疑目标,利用可疑目标点与其周围像素的梯度关系得到可疑目标点的中心坐标,并据此得到其在图中的尺寸大小;对每个可疑目标划分一个自适应大小窗口,获取分割阈值,分割出真实目标。实验结果表明,该方法能较好地检测出弱小目标,且具有较低的虚警率。 相似文献
2.
3.
4.
针对红外图像弱目标检测困难的现状,提出一种基于最恰对比度显著性分析的红外弱小目标检测方法,在滑动窗口中采用了非线性处理技术对图像进行处理,避免了传统的显著度分析算法处理图像时在景像边缘处产生的显著度值干扰问题,同时不影响在目标区域对目标的提取能力。进行了大量的半实物仿真实验,结果表明,虽然提出的方法在背景抑制因子中未明显提高,但在均值信噪比和信噪比增益两个指标中对目标检测性能明显增强。在图像处理后的三种方法视觉对比图中,效果最好。 相似文献
5.
针对复杂背景下的红外弱小目标检测,本文提出了一种改进的Gabor滤波的红外弱小目标检测方法.该方法在背景预测算法的基础上,通过构造Gabor核函数来自适应确定背景预测系数.该方法利用了更多的图像局部特性信息,使用对比度尺度模型和强度尺度传播模型分别确定Gabor核函数的两个轴,解决了Gabor滤波算子不能自适应调整滤波系数的问题.通过与传统的小目标检测方法的比较实验结果表明,本文方法能有效保留图像的边缘信息,能有效地突出目标,抑制背景杂波,提高了对红外弱小目标的检测能力,效果明显优于传统方法. 相似文献
6.
7.
8.
针对复杂背景下红外弱小目标难以准确快速检测的问题,提出了一种红外弱小目标轻量化实时检测网络模型YOLO-IDSTD。首先,为提高检测速度,重新设计了特征提取部分的网络结构,并在输入层后使用Focus模块以减少推理时间;其次,为增强检测能力,特征融合部分采用路径聚合网络,添加了改进的感受野增强模块;最后,目标检测部分增加至四尺度检测。在红外弱小目标数据集上进行的对比实验表明,相较于经典轻量化模型YOLOv3-tiny,文中提出的模型召回率提升了7.57%,平均检测精度提高了1.92%,CPU推理速度提升了36.1%,可较好地兼顾精度和速度,计算量与参数量明显减少,模型尺寸压缩至7.27 MB,减少了对硬件平台运算能力的依赖,实现了红外弱小目标准确又快速的检测。 相似文献
9.
10.
11.
12.
文中针对在传统红外弱小目标检测中,需要进行背景抑制滤波所带来的图像性质改变和检测速度不理想的问题,提出了一种基于局部二元模式(local binary pattern,LBP)算子的红外弱小目标检测方法.该方法对传统LBP算子进行了改进,使其提取的LBP编码值可以有效地描述红外弱小目标的灰度分布特性,达到了在不进行背景抑制滤波的条件下有效检测弱小目标的目的.结合改进的LBP算子和红外弱小目标灰度的\"尖峰\"特征,建立了灰度自适应快速扫描机制,有效提高了检测速度,降低了重复告警的出现概率.通过实录红外图像序列检测实验,证明本文方法在检测性能和检测速度方面的有效性和优越性. 相似文献
13.
14.
在超远距离红外目标探测中,由于杂散光、探测器热传导及闪元盲元等复杂干扰,红外图像的背景常表现为非均匀性。同时,目标成像尺寸小,缺乏明显的形状和纹理特征,增加了检测与识别的难度。传统的特征提取方法易出现大量虚警,深度学习方法在特征提取方面具有优势,但在复杂背景干扰下训练难度较大。文中将计算机视觉领域中的背景重建问题与红外图像弱小目标检测任务相结合,提出了一种基于复杂背景智能抑制的红外弱小目标检测方法。该方法采用编码器-解码器架构设计了红外场景优化编解码背景抑制网络模型,引入多级融合机制和残差融合模块以实现多尺度特征提取和多层次特征融合,并提出感知一致性损失函数提高背景重建的鲁棒性。通过背景残差抵消策略有效实现背景抑制,最终结合全局阈值分割完成弱小目标检测任务。实验结果表明,与对比方法相比,文中方法在抑制背景方面背景标准差最高降幅达43.41%,目标信噪比最高提升至110.0257 。在目标检测方面,四组数据中检测率均超过95%,展现出优异的检测效果,具有较强的工程实用性,为复杂背景下的红外弱小目标检测任务提供了新的解决方案。 相似文献
15.
16.
17.