共查询到20条相似文献,搜索用时 109 毫秒
1.
给出了基于递归神经网络非线性无模型的自适应控制方案,它具有灵活、简单、方法等特点,可以处理传统方法和非线性无模型系统自适应控制方法不能控制或控制效果不理想的非线性对象。理论分析和仿真结果证明了这种方法的优越性。 相似文献
3.
本文着重研究了神经元网络模型中的BAM模型,并提出了用于直观地考察BAM状态的能量图.我们注意到BAM的性能是很弱的,所以又提出了改进模型r BAM,并证明了r BAM的性能比BAM优越。最后在单个PC和局网上实现了r BAM模型的软件模拟. 相似文献
4.
主要控制了一类非线性系统的神经网络学习控制问题。讨论了以迭代学习方式训练的神经网络学习控制器,在满足一定条件,可以实现一定时间内的系统输出跟踪。 相似文献
5.
基于递归神经网络给出了仅含一个非线性环节的一类非线性系统的自适应控制方案。该方案采用递归神经网络辨识非线性系统中的未知非线性环节。沿用广义最小方差自校正控制方法,可以解决非线性环节未知和工作点变化时传统方法无法控制的自适应控制问题。理论分析和仿真结果表明,该方法具有很好的控制效果。 相似文献
6.
提出了一种未知非线性动力学系统的神经网络控制策略,用动态多层BP网进行辨识,静态网进行控制,控制器结构简单,收敛快泛化能力强,仿真结果表明,该策略对几类非线性系统的控制是有效的,且适用于多值逆映射非线性系统,可用于实时控制。 相似文献
7.
利用前馈神经网络建立对象的非线性预测模型,用多级阶跃响应建立平均线性模型。 相似文献
8.
本文针对一类具有未知非线性函数和未知虚拟系数非线性函数的二阶非线性系统 ,提出了一种基于神经网络的稳定自适应输出跟踪控制方法 .用李雅普诺夫稳定性分析方法证明了本文的神经网络自适应控制器能够使受控系统稳定 ,并使输出跟踪误差随时间趋于无穷而收敛到零 .仿真算例证明了该算法的有效性 相似文献
9.
针对一类非线性离散动态系统,设计了一个自适应控制方案。为了保证在任意时刻均能为被控的动态系统选择最好的控制器,方案基于输入输出数据为系统定义一个线性预测模型,并在此基础上设计能够保证闭环系统所有信号有界的线性鲁棒自适应控制器,同时定义一个非线性预测模型,再基于径向基神经网络设计一个旨在提高系统控制性能的非线性自适应控制器。通过比较2个控制器预测的系统输出性能,设计合理的开关切换规则。控制方案能将系统稳定性控制和性能优化的控制分离并单独实现,使得系统能在保证稳定性前提下,借助神经网络控制器良好的追踪能力有效提高自适应控制效果。最后通过仿真例子说明了系统稳定和提高输出追踪效果可以同时得到保证。 相似文献
10.
采用基于递推预报误差算法的分布式神经网络
结构建立非线性系统模型.子神经网络模型及其连接权值均采用递推预报误差方法来进行训
练,将所有子网络融合得到的分布式神经网络模型在模型精确性和鲁棒性方面有显著地增加
.该方法较好地应用于复杂非线性动态系统的建模. 相似文献
11.
针对较强非线性的控制问题, 提出一种以RBF 神经网络为模型的多步预测控制方法. 构建多步预测模型, 并给出预测误差关于控制序列的雅可比矩阵的计算方法. 利用Levenberg-Marquardt(L-M) 算法设计滚动优化策略, 过误差修正参考输入的方法实现了反馈校正, 证明了控制系统的稳定性. 仿真结果表明所提出的控制方法效果较好. 相似文献
12.
对于一类具有未知时变时滞和虚拟控制系数的不确定严格反馈非线性系统,基于后推设计提出一种自适应神经网络控制方案.选取适当的Lyapunov-Krasovskii泛函补偿未知时变时滞不确定项.通过构造连续的待逼近函数来解决利用神经网络对未知非线性函数进行逼近时出现的奇异问题.通过引入一个新的中间变量,保证了虚拟控制求导的正确性.仿真算例表明,所设计的控制器能保证闭环系统所有信号是半全局一致终结有界的,且跟踪误差收敛到零的一个邻域内. 相似文献
13.
针对一类具有未知非线性和未知参数摄动的非线性多智能体系统, 提出一种分布式模糊自适应镇定控制方法. 基于邻接智能体信息和部分智能体的自身信息, 分别设计静态耦合和动态耦合的分布式模糊自适应控制律. 基于Lyapunov 稳定性理论, 证明了所提出的控制器能使得系统状态最终稳定于原点的邻域内. 仿真实例验证了所提出方法的有效性. 相似文献
14.
针对一类具有预先指定切换序列的切换非线性系统,研究了具有通信信道干扰和时滞测量的分布式模型预测控制问题.在每个子系统都存在镇定控制器的假设下,利用基于Lyapunov函数的模型预测控制器设计了分布式模型预测控制器,并给出了闭环切换非线性系统最终有界的充分条件.最后,通过仿真结果表明了分布式模型预测控制策略的有效性. 相似文献
15.
针对老鼠海马结构中网格细胞到位置细胞的信息传递问题, 构建网格细胞到位置细胞的竞争型神经网络模型. 在一维和二维环境中的仿真结果均符合生物学研究事实, 结果表明, 模型能够模拟齿状回和海马中位置细胞的放电特性, 可有效解释位置细胞位置野的形成机理. 相似文献
16.
研究在频谱共享条件下家庭基站双层网络的分布式功率控制策略.将宏基站所能承受的干扰限度视为家庭基站的可分配资源,家庭基站以竞价形式对其"购买",从而构成宏基站与家庭基站以及家庭基站用户之间的博弈模型.分析了该博弈过程中纳什均衡解的存在性和惟一性,并给出了在非合作模式下指导家庭基站用户进行理性竞争的分布式功率调整算法.最后,通过仿真实验验证了所提出算法的有效性. 相似文献
17.
针对一类非线性离散时间系统给出最优预见控制器设计方法. 首先运用非线性控制系统直接控制方法的思想, 将非线性反馈部分作为形式输入, 使得系统成为“形式上”的线性系统; 然后, 针对该线性系统, 利用最优预见控制的基本方法设计最优预见控制器; 最后, 利用形式输入与实际输入的关系得到非线性离散时间系统的最优预见控制器. 证明了如果形式线性系统满足一定的可镇定和可检测条件, 则闭环系统是渐近稳定的. 数值仿真结果表明了控制器的有效性. 相似文献
18.
针对现有的利用非线性滤波算法对神经网络进行训练中存在滤波精度受限和效率不高的缺陷, 提出一种基于容积卡尔曼滤波(CKF) 的神经网络训练算法. 在算法实现过程中, 首先构建神经网络的状态空间模型; 然后将网络连接权值作为系统的状态参量, 并采用三阶Spherical-Radial 准则生成的容积点实现神经网络中节点连接权值的训练. 理论分析和仿真结果验证了所提出算法的可行性和有效性. 相似文献
19.
针对一类非线性关联大系统在结构扩展时的跟踪控制问题, 提出一种采用自适应神经网络的控制方法. 该方法要求在不改变原结构系统控制律的前提下设计新加入子系统的控制律和自适应律, 使扩展后所有子系统都具有很好的跟踪性能. 这里主要利用神经网络的逼近功能以及Backstepping 技术来设计自适应律和控制律, 通过Lyapunov 理论证明在该控制器的作用下闭环系统的所有信号均是有界的, 并可使系统准确跟踪. 仿真结果验证了所提出方法的有效性. 相似文献
20.
针对非线性系统逆模型的学习问题,提出一种基于贝叶斯-高斯神经网络(BGNN)的设计方法.BGNN模型的训练分为两个步骤,首先利用群智能优化算法进行BGNN的离线结构训练:然后用训练好的BGNN模型在线整合历史数据,进行非线性系统逆模型的获取.对水轮发电机组非线性系统进行了BGNN逆模型的仿真,结果表明了BGNN逆模型设计方法具有结构简单、在线辨识效果好等优点,适于非线性离散系统的逆模型设计. 相似文献
|