首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
采用响应面法探讨玉米胚芽粕中提取水溶性膳食纤维的酶解工艺条件。通过单因素和响应面分析法,考察纤维素酶的加酶量、酶解时间和料液比对水溶性膳食纤维提取率的影响,优化了提取工艺参数。结果表明:纤维素酶的最佳提取工艺条件为纤维素酶量13Iu/g、液料比13∶1、时间为3.0h,在该条件下玉米胚芽粕中水溶性膳食纤维的提取率为6.65%,占总膳食纤维的49.01%。  相似文献   

2.
秦杰  苗敬芝  董玉玮 《食品科技》2011,(10):157-160
以花生粕为原料,采用双酶法探讨花生粕中总膳食纤维提取工艺条件。通过单因素实验,考察木瓜蛋白酶的加酶量、酶解时间、温度和糖化酶的加酶量、酶解时间、温度对总膳食纤维提取率的影响。结果表明,木瓜蛋白酶的最佳提取工艺条件:加酶量8%,时间4h、温度50℃;糖化酶的最佳提取工艺条件:加酶量1.2%,时间1h、温度60℃,在该条件下花生粕中膳食纤维提取率为40.45%。  相似文献   

3.
以灵芝子实体为原料,采用复合酶法(纤维素酶、半纤维素酶、木瓜蛋白酶)提取灵芝多糖,并分析工艺条件对多糖提取率的影响。在正交试验确定复合酶比例的基础上,采用响应面法对复合酶法提取灵芝多糖的提取条件进行了优化,得到最优工艺条件。研究结果表明,复合酶比例为:纤维素酶3.5%、半纤维素酶4.0%、木瓜蛋白酶3.0%;最佳酶解提取条件为:酶解处理pH值、温度和时间分别为5.70、50℃和81 min,在此条件下灵芝多糖的提取率为3.73%。  相似文献   

4.
竹荪多糖提取方法的比较研究   总被引:1,自引:0,他引:1  
以竹荪为原料,采用正交实验对超声复合酶法提取竹荪多糖工艺进行优化,并与热水提取法、超声波法、纤维素酶法、果胶酶法、木瓜蛋白酶法、复合酶法进行比较,结果表明,超声复合酶法提取竹荪多糖的最佳条件是料液比1∶50,酶解时间60min,酶解pH6,超声时间40min,多糖提取率为16.35%,而热水提取法多糖提取率为9.77%,超声波法为6.64%,纤维素酶法为8.84%,果胶酶法为10.06%,木瓜蛋白酶法为10.35%,复合酶法为11.27%,均低于超声复合酶法。故超声复合酶法提取竹荪多糖的提取率最高,所需时间较热水提取法大为减少,是7种方法中最好的提取方法。   相似文献   

5.
幸宏伟  程琳 《食品科技》2011,(10):153-156,160
分别由红皮黄心、红皮白心、白皮红心3种红薯渣原料制备,通过实验比较可溶性膳食纤维的得率,结果表明:红皮白心红薯是提取并转化获得可溶性膳食纤维的最理想材料。以干燥、粉碎的红薯渣为原料,用α-淀粉酶和糖化酶1:3混合提取红薯渣膳食纤维,利用纤维素酶法将原料中的膳食纤维降解为可溶性膳食纤维,经4倍无水乙醇沉淀后获得可溶性膳食纤维。实验在单因素基础上,通过正交实验确定最佳纤维素酶法降解膳食纤维条件为:纤维素酶用量120μL,反应温度50℃,酶作用时间为2.5h,pH为4.0,未采用纤维素酶降解的对照组实验所得可溶性膳食纤维含量为32.19%,正交实验优化提取条件后得到的红薯渣可溶性膳食纤维含量为60.97%,提高了28.78%。  相似文献   

6.
针对豆渣的可溶性膳食纤维含量较少,通过采用生物发酵和纤维素酶处理技术对大豆膳食纤维进行改性,提高豆渣中可溶性膳食纤维(SDF)含量。在对改性豆渣提取SDF后,采用复合酶辅以超声波提取IDF工艺技术,在复合酶添加量0.6%,超声波功,400w,作用温度50oC,作用时间30min条件时,膳食纤维提取率87.21%,产品持水率、膨胀率得到提高。  相似文献   

7.
以竹笋为原料,在酶解时间、酶解温度、复合酶质量分数、复合酶质量比值4个单因素实验的基础上,通过响应面法对竹笋膳食纤维提取工艺条件进行优化。结果表明:最佳提取工艺条件为酶解时间95 min、酶解温度56℃、复合酶质量分数0.52%、复合酶质量比值为蛋白酶∶纤维素酶=3∶1,在此条件下竹笋膳食纤维提取率最大,为53.21%。   相似文献   

8.
以竹笋为原料,在酶解时间、酶解温度、复合酶质量分数、复合酶质量比值4个单因素实验的基础上,通过响应面法对竹笋膳食纤维提取工艺条件进行优化。结果表明:最佳提取工艺条件为酶解时间95 min、酶解温度56℃、复合酶质量分数0.52%、复合酶质量比值为蛋白酶∶纤维素酶=3∶1,在此条件下竹笋膳食纤维提取率最大,为53.21%。  相似文献   

9.
目的:花生除少部分作为干果食用之外,大部分作为油料资源用于榨取食用油脂,花生粕是花生仁提取油后的副产物,主要作为饲料和肥料,没有得到很好的开发与利用,本研究以花生粕为原料,提取功能性食品添加剂膳食纤维。方法:主要研究了NaOH浓度、提取温度和提取时间对花生粕水不溶性膳食纤维提取率的影响,并通过正交实验对膳食纤维制备工艺进行优化,同时研究了水溶性膳食纤维的提取条件。结果:水不溶性膳食纤维的提取工艺条件:15%NaOH溶液,40℃提取50min,提取率为34.20%;水溶性膳食纤维的提取工艺条件:提取水不溶性膳食纤维后的滤液调pH到3.0除去蛋白质,再调pH到6.5,乙醇沉淀,提取率为8.70%。结论:用化学分离法提取花生粕中膳食纤维是可行的,且可提高花生附加值,增加农民收入。  相似文献   

10.
以猕猴桃皮渣为原料,采用酶法制备猕猴桃可溶性膳食纤维。在单因素实验的基础上,以纤维素酶添加量、酶解时间、酶解温度和液料比为实验因素,以可溶性膳食纤维提取率为响应值,采用四因素五水平的响应面分析法进行实验,优化提取工艺参数。同时,考察了猕猴桃可溶性膳食纤维对DPPH和ABTS+自由基的清除效果及其还原能力。结果表明,酶法制备猕猴桃可溶性膳食纤维的最佳工艺条件为:酶添加量0.86%、酶解时间2.5h、酶解温度62℃和液料比27∶1(mL/g),在该条件下猕猴桃可溶性膳食纤维提取率预测值为13.379%,验证值为12.983%,响应面法对猕猴桃可溶性膳食纤维提取条件的优化是可行的,可用于实际预测。抗氧化活性实验表明猕猴桃可溶性膳食纤维具有较强的自由基清除效果和还原能力,对DPPH和ABTS+自由基的EC50分别为4.68mg/mL和1.28mg/mL。   相似文献   

11.
薛山  肖夏  谢建山 《食品工业科技》2021,42(1):197-203,210
研究琯溪柚皮海绵层水溶性膳食纤维(SADF)的最佳提取工艺,实现蜜柚废弃物综合利用,减少资源浪费。以平和琯溪蜜柚柚皮为原料,采用超声波辅助酶法提取SADF。在单因素实验考察超声波作用时间、料液比、纤维素酶添加量、纤维素酶作用温度和酶作用时间对柚皮SADF的得率和羟自由基清除率影响的基础之上,进行3因素3水平Box-Benhnken双响应面结合Matlab优化实验,确定最佳提取方案为:超声波前处理30 min,料液比1:55 g/mL (1:53~1:55 g/mL),纤维素酶添加量3%,纤维素酶作用温度50℃(48~50℃),纤维素酶作用时间90 min (上限值C=90 min)。此时,柚皮SADF的得率理论值可以达到31.40%(25.12%~31.40%),羟自由基清除率理论值可达到66.16%(51.50%~66.16%),与实际值(得率:32.82%±0.33%,清除率64.43%±1.88%)差异不显著(P>0.05)。可见,Box-Benhnken结合Matlab优化工艺条件下提得的蜜柚海绵层SADF同时具有较好的得率与羟自由基清除率,为功能性原料提取应用提供了新的思路。  相似文献   

12.
香菇可溶性膳食纤维饮品的研制   总被引:1,自引:0,他引:1  
以香菇为原料,采用超声波辅助酶法提取可溶性膳食纤维,并对香菇提取液进行调配,制成一种富含膳食纤维并具有香菇特色风味的饮料。利用单因素和响应面试验优化超声波辅助酶法提取可溶性膳食纤维的提取工艺:纤维素酶添加量0.8%,超声功率300 W,酶解温度59 ℃,酶解时间27 min,pH 6.0。在此条件下,可溶性膳食纤维提取率为8.07%。通过正交试验对产品的配方进行优化,得出最佳配方为:香菇提取液添加量10%,白砂糖添加量7%,稳定剂添加量0.25%,柠檬酸添加量0.15%。所得饮料中可溶性固形物含量为11.15%,可溶性膳食纤维提取率为3.16%。  相似文献   

13.
响应面法优化纤维素酶提取苹果渣中水溶性膳食纤维   总被引:1,自引:0,他引:1  
以苹果渣为原料,研究纤维素酶作用提取苹果渣中水溶性膳食纤维,通过单因素试验和响应面优化试验确定适宜的提取条件。结果表明:在纤维素酶用量0.67%、缓冲液pH5.55、酶解时间1.90h、酶解温度45℃条件下,水溶性膳食纤维提取率最高,为17.50%。  相似文献   

14.
侯传伟  魏书信  王安建 《食品科学》2009,30(22):119-121
以玉米皮超声提取天然水溶性膳食纤维后的副产物——不溶性玉米皮渣为试材,应用木聚糖酶和纤维素酶组合酶解制备水溶性膳食纤维,采用单因素和正交试验组合研究确立一套由水不溶性膳食纤维改性制备水溶性膳食纤维制备工艺。结果表明,最佳工艺参数为纤维素酶添加量40mg/g 底物、木聚糖酶添加量40mg/g 底物、料液比1:14(g/ml)、酶解时间90min,水溶性膳食纤维得率为5.96%。  相似文献   

15.
采用超声波-微波协同法提取沙棘果皮渣中可溶性膳食纤维的工艺条件。通过单因素实验研究柠檬酸质量分数、料液比、微波功率、提取时间对沙棘果皮渣中可溶性膳食纤维提取得率的影响,进一步用Box-Behnken法优化沙棘果皮渣中可溶性膳食纤维最佳提取工艺。结果表明,在柠檬酸质量分数为3%,料液比1:16 g/mL,微波功率620 W,提取时间60 min的条件下,沙棘果皮渣中可溶性膳食纤维提取效果最佳,提取得率为11.07%±0.26%,与模型预测值10.83%误差为2.22%。制备的沙棘果皮渣可溶性膳食纤维持水力为8.02 g/g,持油力为4.19 g/g,膨胀力为3.82 mL/g。超声波-微波协同法是一种提取沙棘果皮渣中可溶性膳食纤维的有效方法。  相似文献   

16.
以坛紫菜为原料,采用复合酶法提取水溶性膳食纤维,以猪油、菜油为材料考察其抗油脂氧化作用。在单因素实验基础上,采用二次正交旋转组合设计法对坛紫菜水溶性膳食纤维提取工艺进行优化,建立纤维素酶添加量(X1)、酶解pH(X2)、酶解温度(X3)和酶解时间(X4)等4个因素与水溶性膳食纤维提取率之间的回归模型。结果表明:纤维素酶法提取的最佳工艺参数为酶添加量1.1%、酶解pH5.8、酶解温度55℃和酶解时间1.5h,在此条件下坛紫菜水溶性膳食纤维提取率为9.80%±0.12%;膨胀力为1.97mL/g,持水力为276%,坛紫菜水溶性膳食纤维能明显减缓油脂POV值升高趋势,且具有一定的时间和浓度依赖性,显示坛紫菜可溶性膳食纤维具有一定的抗油脂氧化能力。   相似文献   

17.
陈永胜  李志光  钟慧敏 《食品科学》2007,28(12):211-215
本实验以葵花脱脂粕为原料,通过生物酶法和化学法研究葵花脱脂粕中膳食纤维的提取工艺,其中生物酶法得到的膳食纤维得率较高。生物酶法主要用植物精提复合酶和酸性蛋白酶,提取的最佳工艺组合为:植物精提复合酶的用量为0.4%,植物精提复合酶的酶解时间为2.5h;酸性蛋白酶的用量为0.2%,酸性蛋白酶的酶解时间为45min,此时膳食纤维的得率为78.3%。  相似文献   

18.
以金针菇菇脚为原料,对纤维素酶法提取可溶性膳食纤维的工艺条件进行了优化。在单因素试验的基础上,考察了液料比、加酶量和酶解时间对可溶性膳食纤维提取率的影响,通过响应面法确定最佳提取工艺。结果表明,在物料粒度80目、液料比19∶1(mL∶g)、加酶量42 U/g、酶解时间2 h的条件下,金针菇菇脚可溶性膳食纤维的提取率最高,为14.45%。说明应用响应面法优化纤维素酶法提取可溶性膳食纤维的工艺是一种行之有效的方法。  相似文献   

19.
以赣南脐橙渣为原料,采用纤维素酶制备水溶性膳食纤维。在单因素试验基础上,选取酶解温度、加酶量(质量分数)和酶解时间为响应变量,以水溶性膳食纤维得率为响应值,利用Box-Behnken试验设计方案和响应面分析法,建立水溶性膳食纤维得率与响应变量的回归方程,并确定最佳提取条件为酶解温度48℃、加酶量1.25%、酶解时间5h,此条件下水溶性膳食纤维得率为13.11%,与预测值13.14%较为一致。  相似文献   

20.
以新疆骏枣去多糖后枣渣为原料,利用超声-酶解协同作用提取红枣渣不溶性膳食纤维,并采用单因素与响应面分析法对红枣渣不溶性膳食纤维的提取工艺进行优化。进一步以提取的红枣渣膳食纤维为基料,制备高膳食纤维食用粉,考察其促消化作用。结果表明:超声-酶法协同作用提取红枣渣膳食纤维的最佳工艺条件为:加酶量1.5%,料液比1:10 g/mL,超声时间35 min,超声温度70 ℃,在此最优条件下红枣渣膳食纤维提取率可达69.31%±0.91%。红枣渣膳食纤维中总膳食纤维含量在26.5%左右,其中不溶性膳食纤维含量高达21.7%,可溶性膳食纤维含量为4.8%;红枣渣膳食纤维食用粉中剂量(2.7 g/kg)组和高剂量(5.3 g/kg)组给药对小鼠有促进消化和排便的作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号