首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
酶解竹子溶解浆制备纳米微晶纤维素的研究   总被引:2,自引:0,他引:2  
纳米微晶纤维素(NCC)可由可再生资源制备,并且具有诸多特性,近年来成为研究热点。本文应用PFI磨对竹子溶解浆预处理,用纤维素酶水解制备纳米微晶纤维素,研究了酶解时间、酶解温度、酶用量对纳米微晶纤维素产率的影响,采用正交实验优化了工艺参数。并用高效液相色谱仪、马尔文激光粒度仪对水解液及NCC进行表征。结果表明:在酶用量2.736FPU/g、酶解时间3d、酶解温度50℃的条件下,纳米微晶纤维素的产率最高,达到19.13%;高效液相色谱分析表明水解液主要成分为葡萄糖,占总还原糖含量的71.06%,其次为纤维二糖12.39%,木糖7.68%;激光粒度分析表明NCC的Z均粒径为375.5nm。  相似文献   

2.
以芦笋皮为原料,酶法制得膳食纤维后,采用盐酸水解,以溶胀性为指标确定制备微晶纤维素的工艺条件,为芦笋皮的加工利用提供一个新的途径。试验结果表明:在75℃下,盐酸浓度4 mol/L,料酸比1g∶5 mL,酸解时间5 h,制备出的微晶纤维素溶胀性可达6.90 mL/g,比芦笋皮中膳食纤维的溶胀性(4.80 mL/g)高2.10 mL/g。  相似文献   

3.
酸酶法制备纳米豆渣纤维素   总被引:1,自引:0,他引:1  
以富含纤维素的豆渣为原料,采用酸预处理粉碎后的豆渣,预处理条件为3 mol/L的HCl,水解温度100℃,水解时间120 min,HCl溶液添加量与原料比值为50∶1(mL∶g)。以酸预处理干燥后得到的样品作为纤维素酶水解的原料,通过单因素和正交实验,获得制备纳米纤维素的最佳酶解条件:酶用量3 000U/g,pH5.0,温度55℃,时间6 h,液料比20 mL/g。通过扫描电镜和透射电镜检测,制备出的纳米豆渣纤维素呈微球状,粒度为15~50nm。  相似文献   

4.
纳米微晶纤维/聚乙烯醇复合薄膜的制备及性能   总被引:2,自引:0,他引:2  
采用蔗渣为原料制备出粒径大小为20~50nm的纳米微晶纤维素(NCC),并用溶胶/凝胶方法制备出不同NCC含量的纳米微晶纤维素/聚乙烯醇(NCC/PVA)复合薄膜,重点研究了NCC加入量对复合薄膜综合性能的影响。结果表明,NCC的加入能使薄膜的热稳定性有所提高,当NCC的添加量在0.5%时,聚乙烯醇薄膜的拉伸强度提高了115%,吸水性降低了12.0%,断裂伸长率减少了68%。  相似文献   

5.
为提升姜黄素在递送系统中的稳定性,对柠檬籽纤维素纳米晶/纳米纤丝协同稳定的姜黄素Pickering乳液的贮存稳定性、姜黄素保留率及模拟体外消化展开研究。结果表明,柠檬籽纤维素纳米纤丝(lemon seed cellulose nanofibrils, LSCNF)和纤维素纳米晶(lemon seed cellulose nanocrystals, LSCNC)协同稳定的Pickering乳液[颗粒质量浓度为0.5%LSCNC(w/v,下同)+0.1%~1%LSCNF;油/水体积比为5∶5]可作为包埋姜黄素的良好载体。在包埋姜黄素后,其乳液的流变性能略有增强,有利于乳液的稳定,放置15 d后仍保持良好的物理稳定性;同时,姜黄素Pickering乳液可延缓姜黄素的降解速率。随着LSCNF浓度的增加(0.1%~1%),LSCNC/LSCNF协同稳定的乳液样品中姜黄素保留率逐渐增加,其中低温下(4℃)的保留率更高。随着LSCNF质量浓度的增加(0.1%~1%),乳液中的游离脂肪酸总释放率由40%降低至25%左右,但姜黄素生物可及性也轻微降低。研究表明,通过纤维素纳米晶和纤维素纳米纤丝协同稳定的...  相似文献   

6.
本研究以椰子中果皮为原料,采用硝酸-乙醇法提取纤维素,并将提取的纤维素水解制备微晶纤维素;采用分光光度法测定纤维素含量,滴定法测定微晶纤维素得率。单因素实验结果表明椰子中果皮纤维素提取的适宜工艺条件为:80℃下水浴回流2h、料液比为1∶20(g/m L)、酸醇比为1∶3、该条件下,提取所得纤维素含量为75.24μg/m L。以提取的椰子中果皮纤维素为原料制备微晶纤维素的适宜工艺条件为:水解温度100℃、水解时间70min、盐酸质量分数7%、料液比1∶15(g/m L),在此条件下,微晶纤维素得率为97.50%;将制备出来的微晶纤维素进行了红外表征。本工艺能够较好地提高椰子中果皮的应用价值。  相似文献   

7.
王硕  李森  李嘉怡  陈誉  罗磊 《食品与机械》2021,37(10):150-154
目的:利用咖啡果壳制备高吸附能力微晶纤维素。方法:用酸解法制备咖啡果壳微晶纤维素,考察酸解时间、酸解温度、盐酸质量分数和料液比对微晶纤维素得率和吸附能力的影响。结果:咖啡果壳微晶纤维素的最佳制备工艺为酸解时间95 min,盐酸质量分数16%,料液比(m咖啡果壳纤维素∶V)1∶22 (g/mL),酸解温度60 ℃,该工艺条件下咖啡果壳微晶纤维素得率为80.08%,对香精的吸附能力为0.89 g/g。结论:料液比对咖啡果壳微晶纤维素得率影响最大,酸解温度对其吸附能力影响最大,优化工艺得到的咖啡果壳微晶纤维素得率高,吸附能力强。  相似文献   

8.
纳米纤维素晶体(NCC)可由可再生资源制备,并且具有诸多特性,近年来成为研究热点。本文应用PFI磨对竹子溶解浆预处理,用纤维素酶水解制备纳米纤维素晶体,研究了酶解时间、酶解温度、酶用量对纳米纤维素晶体产率的影响,采用正交实验优化了工艺参数。并用扫描电镜、激光粒度仪、傅里叶红外、热重对原料及NCC进行性能表征。结果表明:在酶用量8m L、酶解时间3d、酶解温度50℃的条件下,纳米纤维素晶体的产率最高,达到19.13%。PFI磨预处理及酶解均可细化纤维素,NCC的Z均粒径为375.5nm,所制备的NCC保持了原料的基本化学结构,NCC的热稳定性低于原料,但其热分解残余率增大。  相似文献   

9.
以茶渣为原料,采用盐酸水解法制备茶渣微晶纤维素。通过单因素试验研究了酸解时间、酸解温度、盐酸浓度及料液比对微晶纤维素得率、聚合度和结晶度的影响,采用正交试验优化了工艺参数,并运用X-射线衍射和红外光谱对微晶纤维素产品进行表征。试验结果表明:最佳制备工艺条件为酸解温度95℃、盐酸质量分数8%、酸解时间90 min、料液比1∶16(g/mL)。各因素对得率影响的显著性为:酸解温度盐酸浓度酸解时间料液比;在此条件下,茶渣微晶纤维素产品的得率为54.34%,聚合度为128;X-射线衍射和红外光谱分析表明,茶渣微晶纤维素与原纤维素材料结构一致,结晶度达67.77%,晶粒尺寸为3.98 nm,晶型为纤维素Ⅰ型。  相似文献   

10.
以微晶纤维素为原料,采用酸水解法制备纳米微晶纤维素(NCC)悬浮液,基于真空抽滤法获得NCC薄膜。然后,以NCC为分散剂,并改变其加入量,制备石墨烯/NCC复合涂料液。最后,基于旋涂法将不同配方的石墨烯/NCC涂料液施涂在NCC膜的表面,获得NCC/石墨烯柔性导电薄膜。实验结果表明:添加NCC可有效地提高石墨烯的水相分散性;相比于纯NCC薄膜,NCC/石墨烯复合薄膜的电导率和力学性能均有所增强,但复合薄膜的透光率和热稳定性有所下降;与NCC薄膜相比较,NCC/石墨烯导电薄膜的抗张强度和弹性模量分别增加了207.1%和128.3%,NCC/石墨烯导电薄膜的电导率最大值可达到2.25 s·cm-1。  相似文献   

11.
采用球磨辅助固体酸水解法制备了纤维素纳米微晶,对球磨条件及酸水解条件进行了系统研究,同时对所得纤维素纳米微晶进行了性能表征。结果表明,采用机械力化学-球磨预处理可活化纤维素原料;采用草酸对球磨预活化后的纤维素原料水解提取纤维素纳米微晶,发现球磨处理2. 5 h后,采用70%的草酸在90℃下水解5 h,得到的纤维素纳米微晶尺寸在200~300 nm,产率在61%左右;此外,草酸可通过简单方法进行回收,回收的草酸可继续用于水解制备纤维素纳米微晶。  相似文献   

12.
以大豆皮为原料,采用酸解法制备大豆皮微晶纤维素。通过单因素实验和L9(43)正交实验,研究了料液比、硫酸浓度、酸解时间、酸解温度对制备大豆皮微晶纤维素得率及聚合度的影响。实验结果表明:酸解温度是影响大豆皮制备微晶纤维素的最重要因素,其次是硫酸浓度,酸解时间跟料液比在此实验范围内对测定结果的影响较小,制备大豆皮微晶纤维素的最佳工艺为温度95℃、硫酸浓度3%、酸解时间60min、料液比为1:10(g/mL)。在此最佳条件下,微晶纤维素的得率达到30.12%,聚合度为312。  相似文献   

13.
以胡萝卜渣为原料,采用酸水解法制备微晶纤维素,考察了酸浓度、酸解时间以及酸解温度对微晶纤维素得率的影响。通过单因素和正交试验结果分析确定优化工艺条件,并对制备的微晶纤维素性能进行分析。结果表明:优化的工艺条件是,酸浓度为6%、酸解时间60min、酸解温度80℃,微晶纤维素的得率为33.8%。  相似文献   

14.
探究了纳米微晶纤维素对海藻酸盐-淀粉复合薄膜的增强效果。以脱脂棉为原料,采用化学预处理结合超声破碎法制备纳米微晶纤维素(NCC);以马铃薯淀粉与海藻酸钠为成膜基材,以甘油为增塑剂,将NCC作为增强组分,通过流延法制备复合薄膜。微观形貌观察表明,脱脂棉NCC呈棒状,直径30 nm左右,长径比约为8;对复合膜的机械性能、阻隔性能、光学性能、水溶性、热稳定性和红外光谱检测表明,当NCC的添加量为5%(w/w)时,可以有效提高复合膜的拉伸强度、水溶时间和热稳定性,降低复合膜的透湿系数,而对复合膜的透光性影响不大。  相似文献   

15.
以毛笋壳粗纤维为原料,采用酸法处理制备微晶纤维素。通过单因素和正交实验,确定酸法制备毛笋壳微晶纤维素的最佳工艺条件为:料液比1∶20,酸浓度3%,酸解温度65℃、作用时间40 min,该条件下微晶纤维素得率为63.07%,溶胀性为2.14,聚合度为123,性能良好,具有较好的应用前景。  相似文献   

16.
沙棘渣制备微晶纤维素的酶解条件优化   总被引:1,自引:0,他引:1  
沙棘浆加工过程中产生酚酸含量高的果渣,因其苦涩无法被饲料工业大量转化,利用其进行微晶纤维素制备是潜在可行的解决途径。以粗提沙棘渣纤维素为处理对象,使用S10041纤维素酶水解,选取液料比、酶添加量、酶解时间、酶解温度、缓冲液p H值、离心转速、烘干温度及纤维素粉碎度8个因素,通过单因素试验和PlackettBurman因素筛选,并经过最陡爬坡试验和Box-Behnken试验优化了酶解条件,随后对制得的微晶纤维进行结构分析。结果表明:在液料比49∶1(m L/g)、酶添加量68 U/m L、酶解时间1.3 h、离心转速3 640 r/min时制得的沙棘微晶纤维素聚合度为355±1.02,与棉微晶纤维素聚合度最为接近。方差分析表明4个选定因素对指标均产生独立影响,因素交互作用对指标影响不显著(P=0.10)。微观结构显示沙棘微晶纤维表面结构更疏松,红外图谱对比沙棘和棉花两种微晶纤维官能团结构相似。  相似文献   

17.
小麦麸皮中酚酸提取方法的研究   总被引:1,自引:0,他引:1  
研究了酸种类、酸碱浓度、水解时间、水解顺序对小麦麸皮中束缚型酚酸释放量的影响。结果表明,酚酸在小麦麸皮中主要以束缚型形式存在,且肉桂酸类酚酸含量明显高于苯甲酸类酚酸,其中以阿魏酸的含量最高。水解方法对酚酸释放量的影响存在显著差异。采用超声波辅助有机溶剂(甲醇:丙酮:水=7:7:6)提取,酚酸释放量最高的水解条件为:先用2mol/L氢氧化钠室温水解4h,再用2mol/L盐酸于85℃下水解1h,束缚型酚酸总释放量达4719μg/g麸皮。  相似文献   

18.
使用硫酸水解α-纤维素以制备得到纤维素纳米晶(cellulose nanocrystalline, CNC),然后利用高碘酸钠将CNC分子中邻位羟基特异性地氧化成醛基制得双醛纤维素纳米晶(dialdehyde cellulose nanocrystalline, DCNC)。分别以CNC和不同醛基含量的DCNC的悬浮液为水相,大豆油为油相制备负载二氢杨梅素的Pickering乳液。结果表明,通过调节高碘酸钠的添加量可以制备醛基含量可控的DCNC。当NaCl的浓度为50 mmol/L、CNC和DCNC悬液的质量浓度为10.0 g/L、油水相比为0.4∶1,采用超声-均质结合法能够制备稳定的Pickering乳液。高碘酸钠氧化能够减小CNC的粒径以及其表面的负电荷,进而显著增强Pickering乳液的稳定性。Pickering乳液对二氢杨梅素的释放速率随着DCNC醛基含量的增加而逐渐减缓。Pickering乳液缓释二氢杨梅素的动力学过程符合基于溶出和扩散机制的Weibull分布模型。综上,通过控制高碘酸钠对CNC的氧化程度,可以有效调节Pickering乳液的稳定性和缓释行为。  相似文献   

19.
以马铃薯淀粉加工的主要副产物——湿马铃薯渣为原料,研究直接制备微晶纤维素的方法。首先采用氢氧化钠脱除半纤维素,再使用酸性亚氯酸钠法脱除木质素,最后使用稀酸处理来去除残留的淀粉,同时降解纤维素得到微晶纤维素。该工艺针对马铃薯渣的组分特征和物料特性,采用一步酸解法直接制备微晶纤维素,无需预先制备粗纤维素,将前处理除去淀粉和降解纤维素的步骤合并,简化了工艺流程,提高了处理效率和资源利用效率,同时对所得微晶纤维素的品质无明显影响。根据单因素实验以及正交优化实验结果,酸解的最佳实验条件为:盐酸浓度为10%,酸解时间为120min,酸解温度为95℃,料液比为1∶2。  相似文献   

20.
明悦  陈英  车迪 《纺织学报》2016,37(6):1-6
为了开发一种无氟环保的拒水整理方法,采用酸解法制备纳米微晶纤维素(NCC),并将其协同有机硅拒水剂二浴法整理棉织物。优化了NCC制备条件,并通过红外光谱、X射线衍射、热失重等测试手段对其结构及热性能进行分析;探讨了NCC粒径及整理工艺参数对有机硅拒水剂拒水效果的影响。结果表明,NCC最佳的制备范围为:H2SO4质量分数为60%-65%,温度为40-50℃,反应时间为2-3h;NCC协同有机硅拒水整理时,当NCC粒径在260nm时,织物拒水效果明显提高,达到95分以上,经扫描电镜观察,NCC在织物表面形成粗糙结构。NCC协同有机硅拒水整理最佳工艺参数为:NCC烘干时间180s、拒水整理焙烘时间90s、焙烘温度160℃。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号