首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 234 毫秒
1.
运用了反向凝胶法,以海藻酸盐为壁材,孜然精油为芯材制备孜然精油微胶囊,研究反向凝胶法制备孜然精油微胶囊对孜然精油的包埋效果以及孜然精油微胶囊释放效果。结果表明:运用反向凝胶法制备的孜然精油微胶囊包埋率达到了85.09%;微胶囊具有相对圆整的外貌特征,约76%的孜然精油微胶囊粒径分布在500~800μm之间,呈正态分布;通过控制吐温80添加,可以有效控制孜然精油微胶囊的膜厚度,从而间接控制微胶囊的缓慢释放。  相似文献   

2.
研究了壳聚糖-海藻酸钠内源乳化法制备溶菌酶微胶囊的工艺条件。海藻酸钠浓度2.0%,溶菌酶浓度1.5%,壳聚糖浓度为0.3%,Span80的添加量为油相体积的1.0%时,正交实验得出最佳制备条件为:碳酸钙与海藻酸钠质量比为7:40,水相与油相体积比为30:70,冰醋酸与碳酸钙质量比为1.4:1。然后,研究了溶菌酶微胶囊的粒径分布以及在模拟胃肠液中的控制释放效果和包埋后的溶菌酶在模拟胃液中的稳定性。结果表明,微胶囊粒径大小为483.7μm,粒径分布指数为0.6;优化得到的微胶囊在模拟胃液中2h释放率为35.5%,在模拟肠液4h后总释放率达88.9%;模拟胃液处理后溶菌酶保留活性达90.0%。  相似文献   

3.
采用复凝聚法结合正交试验设计,优化葡萄柚精油纳米微胶囊制备工艺。以A型明胶、海藻酸钠为壁材,葡萄柚精油为芯材,CaCl_2溶液为固化剂,在超声辅助的情况下,考察芯壁比、超声时间、超声振幅、固化剂添加量4个因素对微胶囊粒径大小的影响。通过激光粒度仪、傅里叶红外光谱仪及热重分析仪分别对葡萄柚精油纳米微胶囊的粒径分布、单体反应情况和热稳定性进行分析表征。结果表明:制备的最佳工艺为芯壁比1:2 (g/g),超声时间10 min,超声振幅10%,固化剂与壁材质量比1:3,此条件下制备出的微胶囊平均粒径为(210.08±10.12)nm,包埋率为(65.02±1.18)%;PDI为0.295,体系分散性较好;Zeta电位值为-18.4mV,微胶囊带负电荷,体系较稳定;傅里叶红外光谱显示微胶囊含有葡萄柚精油的特征峰;热重分析试验结果显示包埋后的葡萄柚精油纳米微胶囊具有很好的热缓释。  相似文献   

4.
赵帅  庄媛媛  杨华 《食品科技》2023,(1):233-239
茶树精油具有良好的抗菌性能,但是茶树精油易挥发,具有强烈的刺激性气味,且在光或氧作用下容易变质。为了提高茶树精油的稳定性,实验先用共沉淀法制备β-环糊精(β-CD)包合物,茶树精油和β-CD包合物最佳的芯壁比为7(mL):10(g)。然后将包合物通过复凝聚法制成复合微胶囊,最佳制备条件是:明胶和阿拉伯胶的质量比为1:1,质量分数为2%,明胶、阿拉伯胶复合物与β-CD的质量比为0.5。利用扫描电镜和粒度分析仪测定茶树精油包合物和复合微胶囊的粒径分布和表观形态。通过TG和DSC分析,了解茶树精油包合物和复合微胶囊受热后的变化。采用加速释放实验测定茶树精油的释放性能。结果表明,茶树精油复合微胶囊不仅可以提高茶树精油的热稳定性,而且茶树精油接近均匀释放,且释放速率低于茶树精油包合物的释放速率。  相似文献   

5.
本研究以大豆分离蛋白和壳聚糖为壁材,通过复凝聚法制备番茄红素微胶囊,研究了在反应体系中添加不 同质量浓度的羧甲基纤维素钠对番茄红素包埋性能及微胶囊各种性质的影响。结果发现加入20 mg/mL的羧甲基纤 维素钠溶液后,制备的番茄红素微胶囊较为分散,粒径和ζ电位降低,微胶囊粉末的休止角为50o,包埋产率和效率 分别急剧增加至64.3%和74.2%,释放率为12.0%,表明在反应体系中加入羧甲基纤维素钠可增加番茄红素微胶囊的 分散性、流动性、包埋产率和包埋效率,降低微胶囊的粒径、ζ电位及芯材在酸性介质中的释放速率,且存在剂量- 效应关系;另外,羧甲基纤维素钠的存在还增强了微胶囊在100 ℃高温下的稳定性。因此,在大豆分离蛋白-壳聚糖 复凝聚体系中添加羧甲基纤维素钠可提高番茄红素微胶囊的加工特性。该研究为拓展番茄红素在食品中的应用提供 了理论依据。  相似文献   

6.
为了提高薰衣草精油的稳定性并且能使精油能控时控释释放。本实验考察了不同浓度的Span 85对乳液质量的影响,同时考察了去稳定剂、海藻酸钠浓度、CaCl2浓度、固化时间对薰衣草精油微胶囊制备效果的影响,进而得出适宜的薰衣草精油微胶囊制备条件,并对其性能进行了测定,同时研究了不同膜厚度和pH条件下薰衣草精油的释放情况。结果显示,分别加入乙醇、吐温20、乙醇加吐温20后微胶囊的膜厚度从20 μm增加至56 μm。释放结果表明,空白组在10 h内释放量达到了92%,乙醇组为80%,吐温20组为82%,但乙醇加吐温20组释放量仅为70%。此外还对微胶囊的载药量、包封率、粒径、形态等进行了考察,结果显示微胶囊的载药量在38.2%~57.2%之间,包封率在76.4%~92.8%之间,粒径处于45~84 μm之间。综上所述,所制备的微胶囊膜厚度可控、形态圆整均一,薰衣草精油的释放时间长短可通过调节膜的厚度及释放介质的pH来实现。  相似文献   

7.
李凤  金虹  黄业传 《食品工业科技》2012,33(20):195-198
为开发新型天麻功能性食品进行了天麻提取物-海藻酸钙微胶囊的制备研究和性能测定。在不同浓度的CaCl2液中用滴制法制备微胶囊;以胶凝过程中微胶囊质量变化表示胶凝的速率;微胶囊的直径用测微尺在显微镜下测得;还测定了微胶囊的释放度和包埋率。结果表明,胶凝在最初的8h内进行较快;当CaCl2溶液浓度达到0.1mol/L以上时均能得到较好的胶凝效果。制得胶囊的粒径大小在(214±2.1)~(235.9±3.3)μm;海藻酸钠质量分数3.75%时形成的微胶囊粒径显著大于2.5%时的粒径。微胶囊的包埋率为47.73%±0.56%~49.83%±0.86%。微胶囊在pH6.8的磷酸盐缓冲液中8h内的累积释放可达85%以上。因此天麻提取物-海藻酸钙微胶囊具有用于开发天麻功能性食品的潜力。  相似文献   

8.
草果精油易挥发、不稳定的特点限制其应用范围。为了有效提高草果精油利用率,本文对草果精油微胶囊的制备工艺进行优化并对其性质进行探究。以草果精油、乳化剂为芯材,辛烯基琥珀酸酐淀粉钠(Octenyl Succinic Anhydride Starch,OSA淀粉)、麦芽糊精、胶体为壁材,采用喷雾干燥法制备草果精油微胶囊。通过单因素和正交实验优化其制备工艺,并研究了草果精油微胶囊的物理性质、形貌特征、热稳定性。结果表明:最佳工艺配方为草果精油30%(w/w)、单,双甘油脂肪酸酯1%(w/w)、N-CREAMER 46型号OSA淀粉15%(w/w)、阿拉伯胶0.2%(w/w),喷雾干燥制备的草果精油微胶囊包埋率81.07%±3.20%,负载率64.43%±5.32%,水分含量3.40%±0.08%,复水后平均粒径(226.37±3.06) nm,微胶囊产品呈干燥粉末状,复水溶解迅速,包埋效果较好。经过同步热重差热分析,包埋后的草果精油的热稳定性得到了明显提高,扫描电镜观察草果精油微胶囊颗粒分布均匀。本研究可为喷雾干燥法制备草果精油微胶囊的工业生产提供一定技术参考。  相似文献   

9.
以海藻酸钠和壳聚糖为壁材,通过复凝聚法制备荔枝多酚微胶囊,提高荔枝多酚的稳定性。选取微胶囊包埋率为优化指标,利用正交试验得出最佳制备工艺,并对微胶囊的体外释放性能、温度稳定性及抗氧化活性进行研究。结果表明,荔枝多酚微胶囊的最佳制备工艺为:海藻酸钠质量分数3.5%,氯化钙质量分数3%,壳聚糖质量分数2.0%,包埋时间1 h,荔枝多酚质量分数0.8%,所得荔枝多酚微胶囊粒径均一,包埋率为95.74%;该微胶囊在模拟肠液(pH6.86)中具有良好的靶向释放性,3 h后多酚释放率为19.66%,ABTS+自由基清除率为20.30%;且在相同的温度条件下,荔枝多酚微胶囊较未包埋的荔枝多酚具有较高的多酚保留率,提高了2.09%~3.34%,表明荔枝多酚的微胶囊化可有效提高荔枝多酚的温度稳定性。  相似文献   

10.
采用喷雾干燥技术,研究制备条件对洋葱精油微胶囊化的影响,以包埋率为指标,通过响应面分析法,优化微胶囊的制备工艺;对比喷雾干燥前后洋葱精油主要成分硫代亚磺酸酯含量的变化,并测定洋葱精油微胶囊的质量指标,对微胶囊制备工艺进行分析;对微胶囊实施体外模拟试验,同时对不同贮藏温度下精油的挥发率进行研究,分析微胶囊的释放效果及稳定性。结果表明:微胶囊最佳制备工艺为乳化温度61 ℃、进风温度177 ℃、进料流量900 mL/h,该条件下微胶囊的包埋率为92.06%,喷雾干燥之后洋葱精油硫代亚磺酸酯保留率值与理论值相近;微胶囊的出粉率、含水率、密度、粒径及感官评分分别为22.34%、3.12%、0.79 g/cm3、15.3 μm和92,出粉率高,含水量低,品质较佳,在胃肠液中的控释效果较好,易于吸收且刺激性小,洋葱精油微胶囊的释放过程与Avrami’s方程拟合良好,随着温度的升高微胶囊释放速率常数上升,微胶囊应在低温条件下贮藏。  相似文献   

11.
探索罗非鱼(Oreochromis niloticus)中提取肌原纤维蛋白(MP)在热处理后(HMP)作为一种新型微胶囊的壳材料,在海藻酸钠(SA)和壳聚糖(CS)共存下,采用超声复凝聚法对玉米油进行微胶囊化,并对其性能进行表征。结果表明:当海藻酸钠含量2.5%,HMP含量3.0%,玉米油含量30%时,乳液粒径小而均匀,乳化稳定性高。壳聚糖含量为1.2%、海藻酸钠和壳聚糖质量比1:1、氯化钙浓度为5.0%时,通过超声复凝聚法得到的微胶囊平均粒径为88.74±2.60μm,包封率为82.59%±1.44%;微胶囊具有不规则形状和起伏的表面;红外光谱和X射线衍射结果表明,海藻酸钠与壳聚糖因静电结合作用,与HMP共同构成了微胶囊致密的外壳;DSC结果显示HMP微胶囊具有一定的热稳定性;HMP微胶囊显著降低了贮存过程中油脂的POV值与TBA值,有效延缓了玉米油的氧化速度;HMP微胶囊在整个模拟消化阶段的游离脂肪酸(FFA)释放量为92.67%,且在肠消化阶段释放更多的FFA,表明微胶囊化对芯材的释放起到了缓释作用。这项研究显示,HMP与海藻酸钠和壳聚糖复合后,是可以用于微胶囊制备及保护生物活性...  相似文献   

12.
本实验分别以β-环糊精(β-cyclodextrin,β-CD)、β-CD+麦芽糊精(maltodextrin,MD)、辛烯基琥珀酸淀粉钠(octenylsuccinate starch sodium,OSS)、酪蛋白为壁材,以香草兰精油为芯材,采用喷雾干燥制备具有缓释性的微胶囊。以产率、包埋率、溶解性、缓释性、乳化液稳定性等为评定指标,对比分析4?种壁材的包埋效果。结果表明:以OSS为壁材的香草兰精油微胶囊(VO-OSS)产率最高,为84.17%,包埋率为78.04%,溶解度和乳状液稳定性分别为96.31%和97.82%,具有良好的冲调性、溶解性和乳化性。MD与β-CD复配壁材的香草兰精油微胶囊(VO-MD)产率和包埋率最低,分别为71.37%和61.18%。在粒径方面,VO-OSS粒径最小,为190?nm。扫描电子显微镜观察结果显示,VO-OSS表面结构光滑、呈球状。VO-OSS在60?℃贮存10?d后,香兰素的保留率为54.62%,表明缓释性高于其他3?种微胶囊。综合所有指标,对比其他3?种微胶囊产品,OSS是制备香草兰精油微胶囊的最佳壁材。  相似文献   

13.
为了提高角鲨烯的稳定性,以明胶和阿拉伯胶为壁材、角鲨烯为芯材、转谷氨酰胺酶为固化剂,采用复合凝聚法制备角鲨烯微胶囊。研究了壁材组成、芯壁比、壁材浓度、p H值、搅拌速度、乳化速度等单因素对微胶囊的包埋率、载药量以及粒径大小的影响,并通过正交试验优化了制备工艺。结果表明,角鲨烯微胶囊的最佳制备工艺:明胶:阿拉伯胶(w:w)为1.00:1.00,芯壁比为1:1,壁材浓度为2%,p H为3.6,搅拌速度为500 r/min,乳化速度10 000 r/min。该条件下,角鲨烯微胶囊的包埋率为(68.2±1.5)%,载药量为(40.8±1.2)%,粒径为(98.5±2.5)μm。  相似文献   

14.
The aim of this study was to produce and characterize microcapsules of thyme oil and finally appraise the extent of stability improvement. The optimum process conditions obtained from orthogonal tests were as follows: ratio of core material to wall 0.5, temperature 40 °C, pH value 3.0 and time 20 min, where the practical encapsulation efficiency was 85.17±1.35%. The microcapsules belong to the nanometric range as the average particle diameter was 531.17±77.12 nm. The results from structural analysis indicated that no significant chemical bond occurred during the encapsulation process and the microcapsules remained stable when the encapsulation was conducted at a temperature below 53.1 °C. Especially, the retention rate of thyme oil in microcapsules remained 39.21% at 4 °C, 36.99% at 25 °C and 33.80% at 40 °C after 30 d of storage. Moreover, protection from light exposure presented a positive impact on the storage stability of thyme oil microcapsules.  相似文献   

15.
选取茶树精油为风味油相,利用甘草酸自组装纳米纤维作为结构单元构建风味精油乳液凝胶体系,研究甘草酸纤维质量分数、茶树精油质量分数、油相组成对精油乳液凝胶外观、微观结构、流变学特性的影响.结果表明:利用甘草酸的两亲性和纤维化自组装,能成功制备出乳滴粒度小(2.5μm)且具有蜂窝状网络微结构的茶树精油乳液凝胶;流变学测试显示...  相似文献   

16.
本实验分别利用高压均质、空化射流和超声破碎3 种均质方式制备以大豆分离蛋白和磷脂酰胆碱包裹的鱼油纳米乳液和微胶囊,并对纳米乳液粒径、Zeta-电位、稳定性、黏度、乳化产率及微胶囊形貌、理化性质、稳定性进行比较分析,研究均质工艺对鱼油纳米乳液和微胶囊理化性质的影响。结果发现,空化射流工艺制备的纳米乳液平均粒径小,乳化产率和乳液稳定性较高,经过空化射流10 min制备的微胶囊包埋率达87.44%,溶解度较高,微胶囊颗粒表面形态饱满、致密、无裂纹和空隙,氧化稳定性和热稳定性较好。高压均质和超声破碎制得的纳米乳液平均粒径大,乳化产率和乳液稳定性较低,经过100 MPa高压均质和400 W超声破碎制得的微胶囊包埋率分别为80.36%和78.64%,溶解度相较于空化射流差,微胶囊颗粒表面分别出现微孔和较大的孔洞,氧化稳定性和热稳定性较差。傅里叶变换红外光谱分析结果表明3 种均质工艺均有较好的包埋效果。通过实验可以得出空化射流均质工艺制备的鱼油纳米乳液及微胶囊在产品性能上要优于其他两种均质工艺。本研究可为鱼油纳米乳液和微胶囊产品的均质工艺选择以及应用评价体系的构建提供理论依据。  相似文献   

17.
为拓宽大豆生物解离乳状液的综合应用,有效解决破乳困难问题,本文采用喷雾干燥法制备大豆生物解离乳状液微胶囊,以乳液的乳化活性、乳化稳定性、粒径分布、流变学性质和喷雾干燥制得的微胶囊包埋率、热稳定性、表面微观结构为指标,研究5种复合壁材对大豆生物解离乳状液微胶囊品质的影响。结果表明,喷雾干燥前,CMC-MD为壁材的混合乳液的黏度最高,为39.18 mPa·s,且乳化性较好,粒径分布向较小粒径方向移动至0.6~2.0 μm。CMC-MD复合壁材制备的微胶囊包埋率最高,达到90.3%,热稳定性最好,结构变化起始温度最高,为98.3℃。扫描电镜图(SEM)显示不同壁材包埋的微胶囊呈现规则的球形或椭球形颗粒,颗粒直径有一定的差异,以CMC-MD为壁材的微胶囊大小均一,结构致密,具有良好的包埋结构,说明CMC-MD能够作为大豆生物解离乳状液微胶囊的壁材,制备出的微胶囊具有良好的包埋率、热稳定性及表面微观结构,对于生物解离乳状液加工应用领域的拓展和产业化的发展具有重大意义。  相似文献   

18.
本文以橙皮精油为芯材,变性淀粉和麦芽糊精为壁材,通过高压(1000、2500、3500和22000 psi)均质制备了不同粒径橙油乳液,从而探讨乳液粒径对喷雾干燥橙油微胶囊平均粒径、包埋率、总油量、含水量、微观形貌以及重组乳液粒径分布的影响。同时以柠檬烯氧化程度评价微胶囊稳定性并预测其货架期。结果表明,均质压力越高,乳液粒径越小。乳液粒径对微胶囊的总油量(1.5 g/20 g)、包埋率(>95%)和含水量(<4%)没有明显影响,但会影响微胶囊的平均粒径、微观形貌以及重组乳液的粒径分布。乳液粒径越小,微胶囊平均粒径越小,表面越光滑,重组乳液也具有更窄的粒径分布。微胶囊在37 ℃贮藏5周,经零级动力学方程拟合氧化柠檬烯/柠檬烯(mg/g)变化的结果表明,以22000 psi制备的微胶囊货架期可长达11周左右,是其余微胶囊货架期的2.97~4.63倍。研究结果可为喷雾干燥精油微胶囊的工艺优化及质量控制提供理论参考。  相似文献   

19.
为制备含玉米低聚肽的紫苏籽油微胶囊,选择阿拉伯胶、可溶性大豆多糖、辛烯基琥珀酸淀粉钠(HI-CAP 100)、酪蛋白酸钠和大豆分离蛋白5 种乳化剂,并添加不同质量分数的玉米低聚肽制备紫苏籽油乳状液,筛选出制备紫苏籽油乳状液的最适乳化剂及最佳的玉米低聚肽添加比例;进而采用喷雾干燥法制备高载油量的玉米低聚肽紫苏籽油微胶囊,筛选和评价高载油量玉米低聚肽紫苏籽油微胶囊的壁材。结果显示:HI-CAP 100制备的紫苏籽油乳状液的液滴粒径主要分布在0.1~2 μm之间,并且玉米低聚肽添加量为5%时,乳状液的不稳定性指数为0.275,粒径为(0.76±0.02)μm;以HI-CAP 100为壁材经喷雾干燥制成的目标微胶囊(载油量≥50%)表面油含量为3%,表明HI-CAP 100对紫苏籽油的包埋效果较好,并且微胶囊粒径分布均匀,表面较光滑适合作为高载油量玉米低聚肽紫苏籽油微胶囊的壁材;通过加速贮藏实验证明玉米低聚肽与茶多酚棕榈酸酯复配,能提高紫苏籽油微胶囊的抗氧化性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号