首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
双抗夹心ELISA检测食品中大肠杆菌O157:H7方法研究   总被引:10,自引:0,他引:10  
研究获得纯化抗大肠杆菌O157:H7IgY抗体,经检测10mg/ml纯化IgY抗体的效价为1:320;以大肠杆菌O157:H7免疫新西兰大耳白兔,获得兔抗大肠杆菌O157:H7IgG抗体,效价达1:25600。以兔抗大肠杆菌O157:H7IgG抗体稀释3200倍作为捕获抗体,抗大肠杆菌O157:H7IgY抗体为检测抗体建立双抗夹心ELISA方法检测大肠杆菌O157:H7,正交试验分析表明,捕获抗体于37℃包被2h、不封闭、抗原与捕获抗体于37℃结合2h、检测抗体浓度为0.25mg/ml、与抗原于37℃结合1h为最优反应条件。该方法对纯培养菌液检出限为105CFU/ml,具有良好的敏感性及特异性。染菌样品经在EC增菌液中选择性培养后进行双抗夹心ELISA检测,接种量为0.1~1CFU/g(ml)的样品在培养12h后可检出阳性反应,1~10CFU/g(ml)的样品在培养8h后可检出阳性反应。  相似文献   

2.
为建立一种灵敏、特异、快速、高效地鉴定纺织品基质中大肠杆菌O157:H7的方法,筛选出大肠杆菌O157:H7特有的rfbE基因保守序列,设计PCR特异性引物和荧光双标记探针,结合免疫磁珠技术,集成创新开发一种目标菌低浓度、不可培养情况下的样品中高效、快速富集分离大肠杆菌O157:H7的技术,建立了一种针对纺织品基质的免疫磁珠富集-实时荧光定量PCR方法,其检测下限可达8 CFU/mL。利用该方法对收集到的30份阳性样品进行鉴定,鉴定结果与传统方法结果100%吻合。结果表明,新建方法稳定性强,实现了纺织品中大肠杆菌O157:H7的快速灵敏鉴定。  相似文献   

3.
研究用特异性的出血性大肠杆菌O157:H7单克隆抗体包被处理的PCR管,对样品中的病原菌进行特异性免疫富集,以免疫捕获-PCR(Immunocaptured PCR,IC-PCR)管中捕获到的病原菌作为模板进行PCR扩增。结果显示免疫捕获-PCR对病原菌出血性大肠杆菌O157:H7检测灵敏度达到102CFU/mL,比直接PCR和ELISA提高了103倍;特异性验证实验证实,对其他10株食源性致病菌进行检测均无目标条带。该方法将免疫学和分子生物学检测结合起来,灵敏度高,特异性强,检测周期短,检测迅速,是适合检测一线进行快速检测的新方法。  相似文献   

4.
当前食源性致病菌导致的食品安全事故频发,特别是大肠杆菌O157:H7,通过合成NH_2-Fe_3O_4磁性颗粒,利用其带电性对大肠杆菌O157:H7进行富集,在优化富集条件的基础上,通过利用基质辅助激光解吸电离飞行时间质谱(matrix-assisted laser desorption/ionization time of flight mass spectrometry,MALDI-TOF MS)对其进行检测,验证该方法的检测限为3.5×10~3 CFU/m L,同时对模拟实际样本(碳酸饮料)中的大肠杆菌O157:H7进行检测,并搜索核糖体蛋白数据库鉴别了大肠杆菌O157:H7。  相似文献   

5.
流式分析技术快速定量检测牛乳中大肠杆菌O157:H7   总被引:1,自引:0,他引:1  
建立一种基于流式分析技术的快速定量检测牛乳中大肠杆菌O157:H7的方法。用偶联有异硫氰酸荧光素的大肠杆菌O157单克隆抗体对大肠杆菌O157:H7进行特异性标记,通过优化抗体反应条件,建立流式检测方法,然后对磷酸盐缓冲溶液(phosphate buffer saline,PBS)和人工污染牛乳样品中不同浓度的大肠杆菌O157:H7进行定量检测。本研究建立的流式检测方法的在PBS中的检测范围为2.57×103~1.12×108?CFU/mL,灵敏度达到2.57×103?CFU/mL。将所建立的流式检测方法应用于牛乳样品检测,当人工污染牛乳样品中大肠杆菌O157:H7的浓度在2.31×104~1.48×108?CFU/mL之间时,流式检测方法与平板计数方法检测结果基本一致,方法的灵敏度为2.31×104?CFU/mL,检测时间为35?min。该方法能快速、定量地检测出牛乳样品中的大肠杆菌O157:H7,在食源性致病菌的快速筛查和监控中具有重要的应用价值。  相似文献   

6.
目的:建立了一种灵敏检测牛奶中大肠杆菌O157:H7的新型荧光酶联免疫吸附方法。方法:以碱性磷酸酶水解焦磷酸盐-Cu2+配位复合物,释放出Cu2+形成铜纳米簇作为信号报告探针,通过对关键因素Cu2+浓度、焦磷酸盐浓度、DNA模板的浓度和长度进行优化。结果:在最优条件下,大肠杆菌O157:H7的菌数为5×104~1×108 CFU/mL时,与荧光信号值有较好的线性关系(R2=0.980 8),最低检出限为2.4×104 CFU/mL。结论:该方法成功地应用于低脂牛奶和脱脂牛奶样本中大肠杆菌O157:H7的测定,平均回收率为92.2%~108.5%,相对标准偏差为4.9%~10.4%。  相似文献   

7.
研制一种大肠杆菌O157:H7量子点免疫层析试纸。利用自制水溶性量子点静电偶联大肠杆菌O157:H7单克隆抗体,将大肠杆菌O157:H7单克隆抗体和羊抗兔二抗划线于硝酸纤维素膜分别作为检测线和质控线,制备双抗体夹心法检测大肠杆菌O157:H7的量子点免疫层析试纸。该试纸条能在5min内完成检测,检测限制为1×104 CFU/mL,对常见的8种食源菌无交叉反应。基于量子点的大肠杆菌O157:H7免疫层析试纸操作简便,灵敏度和特异性较好,可用于食品快速检测。  相似文献   

8.
贮藏于4℃的家制酸奶中低浓度大肠杆菌O157:H7的存活研究   总被引:1,自引:0,他引:1  
牛奶预热后分装并分别接种体积分数3%的酸奶和2.15(lg(CFU/mL))的大肠杆菌O157:H7,在45℃下发酵5h后贮藏于4℃的冰箱中。利用Pathatrix大体积循环系统中偶联了抗体的免疫磁珠特异性地捕获这些酸奶中的大肠杆菌O157:H7。免疫磁珠重悬于1%的蛋白胨水后涂布于添加了新生霉素(5mg/L)的山梨醇麦康凯固体培养基中,培养基在37℃恒温培养箱中放置24h。实验结果表明,酸奶中大肠杆菌O157:H7的数量逐渐减少,12d后才检测不到。因此乳制品加工及保存过程中,需要加强对大肠杆菌O157:H7污染的监测,以保证乳制品的安全性。  相似文献   

9.
实验评价了肉桂精油对大肠杆菌O157:H7的杀菌活性,并且研究了肉桂精油对新鲜蔬菜表面大肠杆菌O157:H7生物膜的清除效果。实验结果表明,肉桂精油具有较强的杀菌活性,短时间内即可灭活高浓度的大肠杆菌O157:H7游离细菌。此外,肉桂精油对大肠杆菌O157:H7生物膜有较好的清除作用,其最小抑制生物膜浓度(MBIC)和最小清除生物膜浓度(MBEC)仅为0.5 mg/m L和1 mg/m L,在浓度为2 mg/m L及4 mg/m L时,可在60 min内完全灭活生物膜细菌。当肉桂精油应用于生菜、菠菜、莴苣、青椒及黄瓜表面时,大肠杆菌O157:H7生物膜细菌数量大幅降低。附着在蔬菜表面的生物膜经4 mg/m L精油处理2d后,细菌数量均低于10 CFU/cm2。  相似文献   

10.
研究建立了免疫磁珠和荧光量子点标记的抗体检测大肠杆菌O157∶H7的方法。采用溶剂热法制备了Fe3O4纳米颗粒,并用SiO2、羧基和大肠杆菌O157∶H7抗体依次包覆制得免疫磁珠。游离的大肠杆菌O157∶H7首先与免疫磁珠结合,然后由量子点标记的抗体与大肠杆菌结合,形成一个三明治结构;随后分析磁分离采集的磁珠的荧光强度(激发/发射波长为370 nm/472 nm)。SiO2壳结构的引入,减少了传统免疫磁珠的非特异性吸附,提高了对目标菌的选择性,同时有效的阻止了三明治结构中量子点因电子转移至Fe3O4而引起的荧光猝灭,保证了分析方法的可行性。动态范围为10~108 CFU/mL,检出限为10 CFU/mL。牛肉、牛奶和蜂蜜样品中大肠杆菌O157∶H7的平均加样回收率分别为95%~104%、90%~94%和90%~110%;相对标准偏差分别为2.1%~3.8%、3.2%~7.8%和5.8%~6.3%。  相似文献   

11.
The immunomagnetic separation with magnetic nanoparticle-antibody conjugates (MNCs) was investigated and evaluated for the detection of Escherichia coli O157:H7 in ground beef samples. MNCs were prepared by immobilizing biotin-labeled polyclonal goat anti-E. coli antibodies onto streptavidin-coated magnetic nanoparticles. For bacterial separation, MNCs were mixed with inoculated ground beef samples, then nanoparticle-antibody-E. coli O157:H7 complexes were separated from food matrix with a magnet, washed, and surface plated for microbial enumeration. The capture efficiency was determined by plating cells bound to nanoparticles and unbound cells in the supernatant onto sorbitol MacConkey agar. Key parameters, including the amount of nanoparticles and immunoreaction time, were optimized with different concentrations of E. coli O157:H7 in phosphate-buffered saline. MNCs presented a minimum capture efficiency of 94% for E. coli O157:H7 ranging from 1.6 x 10(1) to 7.2 x 10(7) CFU/ml with an immunoreaction time of 15 min without any enrichment. Capture of E. coli O157:H7 by MNCs did not interfere with other bacteria, including Salmonella enteritidis, Citrobacter freundii, and Listeria monocytogenes. The capture efficiency values of MNCs increased from 69 to 94.5% as E. coli O157:H7 decreased from 3.4 x 10(7) to 8.0 x 10(0) CFU/ml in the ground beef samples prepared with minimal steps (without filtration and centrifugation). An enrichment of 6 h was done for 8.0 x 10(0) and 8.0 x 10(1) CFU/ml of E. coli O157:H7 in ground beef to increase the number of cells in the sample to a detectable level. The results also indicated that capture efficiencies of MNCs for E. coli O157:H7 with and without mechanical mixing during immunoreaction were not significantly different (P > 0.05). Compared with microbeads based immunomagnetic separation, the magnetic nanoparticles showed their advantages in terms of higher capture efficiency, no need for mechanical mixing, and minimal sample preparation.  相似文献   

12.
A method combining immunomagnetic separation (IMS) and real-time (5'-nuclease) PCR was developed to detect Escherichia coli O157:H7. Monoclonal antibody specific for the E. coli O157 antigen was added to protein A-coated magnetic particles to create antibody-coated beads. The beads specifically captured E. coli O157:H7 from bacterial suspensions. The cells were eluted from the beads and lysed by heating; the eluate was then assayed by real-time PCR, using primers and probe specifically targeting the eaeA gene of E. coli O157:H7. Approximately 50% of the cells in suspension were captured by the beads and detected by real-time PCR. No cross-reactivity was detected when other strains of E. coli were tested. This method was applied to detect E. coli O157:H7 from ground beef. Both cell capture efficiency and real-time PCR efficiency were reduced by meat-associated inhibitors. However, we were still able to detect up to 8% of E. coli O157:H7 from inoculated ground beef samples. The detection sensitivity varied among ground beef samples. The minimum detection limit was <5x10(2) cells ml(-1) for suspensions of E. coli O157:H7 in buffer and 1.3x10(4) cells g(-1) for E. coli O157:H7 in ground beef. The combination of IMS and real-time PCR results in rapid, specific and quantitative detection of E. coli O157:H7 without the need for an enrichment culture step.  相似文献   

13.
A quantitative assay for viable Escherichia coli O157:H7 in ground beef based on immunomagnetic separation (IMS) and the polymerase chain reaction (PCR) was developed. Bacterial cells inoculated into ground beef, were captured by immunomagnetic beads (IMB) after a 6 h non-selective enrichment. The percent capture of the target cells was consistent for the inoculation levels of 0.7 to 70 colony-forming-units (CFU)/g. Captured bacteria were lysed with PCR buffer containing 0.2 mg/mL proteinase K at 65°C for 30 min. DNA sequences of Shiga-like toxin 1 and 2 (Stx 1 and 2) were amplified independently. Log-linear relationships were observed between CFU of E. coli O157:H7 inoculated into ground beef and the integrated fluorescent image of the PCR products with Stx 1 and 2 primers after enrichment. The quantitative range was between 0.7 to 70 CFU/g.  相似文献   

14.
We describe the development and application of an electromagnetic flow cell and fluidics system for automated immunomagnetic separation (IMS) of Escherichia coli O157:H7 directly from poultry carcass rinse. We further describe the biochemical coupling of automated sample preparation with nucleic acid microarrays. Both the cell concentration system and microarray detection method did not require cell growth or enrichment from the poultry carcass rinse prior to IMS. Highly porous Ni foam was used to enhance the magnetic field gradient within the flow path, providing a mechanism for immobilizing immunomagnetic particles throughout the fluid rather than the tubing wall. A maximum of 32% recovery efficiency of non-pathogenic E. coli was achieved within the automated system with 6 s cell contact times using commercially available antibodies targeted against the O and K antigens. A 15-min protocol (from sample injection though elution) provided a cell recovery efficiency that was statistically similar to > I h batch captures. O157:H7 cells were reproducibly isolated directly from poultry carcass rinse with 39% recovery efficiency at 10(3) CFU ml(-1) inoculum. Direct plating of washed beads showed positive recovery of O157:H7 directly from poultry carcass rinse at an inoculum of 10 CFU ml(-1). Recovered beads were used for direct polymerase chain reaction (PCR) amplification and microarray detection, with a process-level detection limit (automated cell concentration though microarray detection) of < 10(3)CFU ml(-1) in poultry carcass rinse.  相似文献   

15.
Losses caused by foodborne diseases are enormous in terms of human life, illness, medical costs, and food product recalls. Rapid detection of multiple bacterial pathogens in foods is extremely important to ensure food safety. The objective of this research was to develop a multiplex immunoassay by integrating magnetic nanobeads (MNBs) for immunoseparation with quantum dots (QDs) as fluorescent labels for rapid, sensitive, and simultaneous detection of three major pathogenic bacteria, Salmonella Typhimurium, Escherichia coli O157:H7, and Listeria monocytogenes, in food products. In this research, both streptavidin-conjugated MNBs (30- and 150-nm diameter) and QDs (530-, 580-, and 620-nm emission wavelength) were separately coated with biotinylated anti-Salmonella, anti-E. coli, and anti-Listeria antibodies. The immuno-MNBs were mixed with a food sample to capture the three target bacteria. After being magnetically separated from the sample, the MNB-cell conjugates were mixed with the immuno-QDs to form the MNB-cell-QD complexes, and unattached QDs were removed. The fluorescence intensity of the MNB-cell-QD complexes was measured at wavelengths of 530, 580, and 620 nm to determine the populations of Salmonella Typhimurium, E. coli O157:H7, and L. monocytogenes, respectively. This multiplex immunoassay simultaneously detected Salmonella Typhimurium, E. coli O157:H7, and L. monocytogenes at levels as low as 20 to 50 CFU/ml in food samples in less than 2 h without enrichment. The change in fluorescence intensity was linearly correlated (R(2) > 0.96) with the logarithmic value of bacterial level in the range of 10 to 10(3) CFU/ml. More than 85% of the three target pathogens could be simultaneously separated from food samples. The multiplex immunoassay could be expanded to detect more target pathogens, depending on the availability of specific antibodies and QDs with different emission wavelengths.  相似文献   

16.
The Meats Research Unit (MRU) methods, developed by MRU scientists of the U.S. Meat Animal Research Center, have been used to study the prevalence of Escherichia coli O157:H7 in cattle carcass, hide, and fecal samples. The sensitivity of these methods for recovery of injured E. coli O157:H7 cells from inoculated and uninoculated samples was determined, and potential improvements to these methods were evaluated. When using the conventional MRU methods, 91% of the pre-evisceration carcass samples tested positive for E. coli O157:H7 when inoculated with 5 to 10 CFU, 100% of hide samples tested positive for E. coli O157:H7 when inoculated with 30 to 50 CFU, and 96% of the fecal samples produced positive results when inoculated with 300 to 400 CFU per 10 g. The addition of a phosphate buffer to the tryptic soy broth enrichment improved recovery of E. coli O157:H7 from feces. Using the modified enrichment, 92% of the samples were identified as positive when inoculated with 10 to 30 CFU per 10 g. Substituting a commercially available wash buffer for the phosphate-buffered saline (PBS) plus Tween 20 wash buffer during immunomagnetic separation of hide samples improved recovery of the target organism at lower inoculum concentrations. When comparing uninoculated samples, substituting a PBS buffer plus a zwitterionic detergent for PBS plus Tween 20 also had a positive effect on recovery of E. coli O157:H7 from hide samples. Data presented here indicate that the MRU methods are highly effective at recovering injured E. coli O157:H7 from fecal, hide, and beef carcass samples; however, modifications can be added to increase the sensitivity.  相似文献   

17.
The objective of this study was to develop a rapid, simple method for enhanced detection and isolation of low levels of Escherichia coli O157:H7 from leafy produce and surface water using recirculating immunomagnetic separation (RIMS) coupled with real-time PCR and a standard culture method. The optimal enrichment conditions for the method also were determined. Analysis of real-time PCR data (C(T) values) suggested that incubation of lettuce and spinach leaves rather than rinsates provides better enrichment of E. coli O157:H7. Enrichment of lettuce or spinach leaves at 42 degrees C for 5 h provided better detection than enrichment at 37 degrees C. Extended incubation of surface water for 20 h at 42 degrees C did not improve the detection. The optimized enrichment conditions were also employed with modified Moore swabs, which were used to sample flowing water sites. Positive isolation rates and real-time PCR results indicated an increased recovery of E. coli O157:H7 from all samples following the application of RIMS. Under these conditions, the method provided detection and/or isolation of E. coli O157:H7 at levels as low as 0.07 CFU/g of lettuce, 0.1 CFU/g of spinach, 6 CFU/100 ml of surface water, and 9 CFU per modified Moore swab. During a 6-month field study, modified Moore swabs yielded high isolation rates when deployed in natural watershed sites. The method used in this study was effective for monitoring E. coli O157:H7 in the farm environment, during postharvest processing, and in foodborne outbreak investigations.  相似文献   

18.
The objective of this study was to develop a fluorescent bacteriophage assay (FBA) for the detection of E. coli O157:H7 in ground beef and raw milk. The FBA is a two step assay that combines immunomagnetic separation, to separate the target organism from mixed culture, with a highly specific fluorescently stained bacteriophage to label the E. coli O157:H7 cells. When used in conjunction with flow cytometry, the FBA was able to detect 2.2 CFU/g of artificially contaminated ground beef following a 6 h enrichment. Between 10(1) and 10(2) CFU/ml of artificially contaminated raw milk were detectable after a 10 h enrichment step. The results show that the FBA is potentially useful as a rapid technique for the preliminary detection of E. coli O157:H7 in food.  相似文献   

19.
Because sprouted seed products are kept wet during and after production, have high levels of nutrients, and a neutral pH, they are subject to the outgrowth of pathogens such as Escherichia coli O157:H7. For these same reasons, these products also contain high levels of heterotrophic organisms and in particular coliform bacteria. Recent outbreaks have focused attention on the need to improve methodology for isolating this pathogen from sprouts. When 40 E. coli O157:H7 strains were grown in pure culture in enterohemorrhagic E. coli enrichment broth (EEB) as prescribed in the U.S. FDA-Bacteriological Analytical Manual (FDA-BAM) and in EEB modified by varying the cefixime concentration, outgrowth for all strains in EEB was inhibited at 0.05 mg/l but for only 2 of 40 strains when the cefixime level was adjusted to 0.0125 mg/l. These two enrichment formulae were compared to modified E. coli broth (mEC), modified Tryptic Soy Broth with 20 mg/l novobiocin (mTSB + N), modified Buffered Peptone Water (mBPW), and mBPW with added 10 mg/l acriflavin, 10 mg/l cefsulodin, and 8 mg/l vancomycin (mBPW + ACV) for isolation of E. coli O157:H7 from sprouts. These comparisons were performed using low-level (0.12 to 0.42 cfu/g) artificially contaminated alfalfa and mixed salad sprouts. After enrichment, two isolation methods were compared for recovery; direct plating to Tellurite-Cefixime Sorbitol MacConkey agar (TCSMAC) and immunomagnetic separation (IMS) (Dynabeads anti-E. coli O157, Dynal, Oslo, Norway) followed by plating to TCSMAC. In addition, an immunoprecipitin detection kit, VIP (BioControl, Bellevue, WA), was evaluated for detection after enrichment. We found that five of the six enrichments were equivalent for detection or recovery while one enrichment (mTSB + N without agitation) was less productive. Incubation for 24 h was more effective in recovering E. coli O157:H7 from sprouts than 6 h for all enrichment broths. Plating after IMS was more productive than direct plating at these low levels of contamination, yielding recovery in 70 of 90 trials compared to 37 of 90 trials without IMS for six enrichments. The sensitivity of VIP for detection of E. coli O157:H7 varied depending on the enrichment broth. Because of the rapid rate of growth of E. coli O157:H7 in mBPW, the high productivity of mBPW + ACV after 24-h enrichment and its compatibility with both IMS and detection with immunoprecipitin tests, mBPW + ACV at 42 degrees C with agitation was found to be the most promising enrichment protocol for testing sprouts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号