首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
以藜麦糠为原料,以液料比、乙醇浓度、超声时间、超声温度为4个考察因素,在单因素实验基础上,以黄酮得率为考察对象,采用Box-Benhnken中心组合设计结合响应面分析法优化藜麦糠黄酮类化合物提取工艺,并对藜麦糠黄酮类化合物体外抗氧化活性进行研究。结果表明,藜麦糠黄酮类化合物的最优提取工艺为:乙醇浓度56%,液料比20:1 mL/g,超声时间14 min,超声温度58℃,在此条件下藜麦糠黄酮类化合物的得率为0.802%。藜麦糠黄酮类化合物有较为明显的抗氧化活性,具有一定的DPPH自由基和羟自由基清除能力,且能力强弱与其质量浓度呈正相关。藜麦糠黄酮样品质量浓度为0.5 mg/mL时,其DPPH自由基清除能力为64%,羟自由基清除能力为77%。藜麦糠作为藜麦的副产品,有一定的开发利用的价值。  相似文献   

2.
通过单因素试验优化超声波辅助提取藜麦多酚的工艺研究,并对藜麦多酚提取液的活性、对自由基和亚硝酸根的清除作用进行研究。结果表明:藜麦多酚的最佳提取工艺为70%乙醇做溶剂、料液比1∶25(g/m L)、超声温度为50℃、以320 W功率超声波辅助提取20 min,藜麦多酚的得率为0.215%,藜麦多酚提取液对亚硝酸根离子的清除能力达到88.4%,对羟自由基的清除能力达到90.4%,对DPPH·的清除率为84.3%。  相似文献   

3.
洋甘菊多糖超声提取工艺优化及清除自由基能力研究   总被引:1,自引:0,他引:1  
以水作为提取溶剂,利用洋甘菊多糖得率为指标,通过单因素试验和响应面设计试验优选超声辅助提取洋甘菊多糖最优工艺;通过测定洋甘菊多糖清除羟基自由基、DPPH的能力来评价其抗氧化活性。研究结果表明:洋甘菊多糖超声提取的最优条件为液固比为82.76 mL/g,超声时间为78.83 min,超声功率为1036.95 W,在此条件下,洋甘菊多糖得率理论值为11.20%。洋甘菊多糖对羟基、DPPH自由基均有较显著的清除作用,清除能力随着多糖质量浓度的增大而增大,表明洋甘菊多糖具有较好的抗氧化作用。  相似文献   

4.
研究藜麦叶片多糖的最佳提取工艺条件以及体外抗氧化活性。采用水浴加热回流法,在单因素试验的基础上,选取提取温度、料液比、浸提时间进行三因素三水平的Box-Behnken中心组合研究。运用Design Expect8.0软件分析试验数据,通过响应面分析法优化提取条件,对藜麦叶片多糖类物质的DPPH·清除能力和·OH自由基能力进行分析,结果表明:藜麦叶片多糖的最佳提取工艺:提取温度90.8℃、浸提时间1.0 h、料液比1∶45.6,在此优化条件下,藜麦叶片多糖提取率达6.1013 g/100 g。各因素对多糖提取率的影响程度:提取温度料液比浸提时间。藜麦叶片多糖提取物具有较强的清除DPPH·和·OH自由基能力,其IC50(半抑制浓度)分别为31.96μg/m L和157.62μg/m L。各品种间,藜麦叶片多糖含量存在明显的差异,其中品种"NSL 92331"的多糖含量最高,达6.88 g/100 g。  相似文献   

5.
利用真姬菇发酵藜麦,通过单因素试验优化发酵物中多糖的提取条件,并将提取的多糖进一步分离纯化,分别测定多糖纯化前后的抗氧化和α-淀粉酶抑制活性。试验结果表明:酶解辅助提取法较优,多糖提取量为(207.67±2.52)mg/g。对提取到的多糖分离纯化后得到4种多糖组分。未纯化多糖(unpurified polysaccharide,UP)对DPPH和羟基自由基清除效果较其他组分显著,最高清除率达到28.95%与43.36%;中性多糖(neutral polysaccharide,NP)对ABTS+自由基清除效果最为明显,最高值达到了51.22%。酸性多糖-0.1(acid polysaccharide-0.1,AP-0.1)对枯草芽孢杆菌来源的α-淀粉酶的抑制效果最强,最高抑制率为60.22%;酸性多糖-0.5(acid polysaccharide-0.5,AP-0.5)对猪胰腺来源的α-淀粉酶抑制能力较显著,最高抑制率为50.36%。结果表明真姬菇与藜麦发酵产物多糖具有一定的抗氧化和α-淀粉酶抑制活性,为其在功能性食品添加剂方向的应用提供了数据基础。  相似文献   

6.
超声波-酶解法和超声波法提取裙带菜多糖的比较研究   总被引:3,自引:0,他引:3  
张胜帮  于萍  曾小明 《食品科学》2011,32(16):141-145
比较研究超声波-酶解法和超声波法提取裙带菜多糖,并采用Fenton体系研究裙带菜中多糖对羟自由基清除活性作用。选取浸提时间、酶用量、固液比及温度4因素采用L16(45)和L9(34)两个方案分别对超声-酶解提取裙带菜多糖和超声波法提取进行正交试验。得到最佳的提取条件为:超声-酶解提取的裙带菜多糖得率与抗羟自由基优化组合为超声-酶解时间15min、纤维素酶用量2.8×104U/g(酶与藻粉比值)、温度70℃、固液比1:80为最佳条件,在此条件下,裙带菜多糖提取率为(4.522±0.028)%,3.60g/L的裙带菜多糖对羟自由基清除率为(51.70±0.47)%。超声-酶解结合方法提取试验条件对裙带菜多糖提取率影响显著(P<0.01)。试验条件对提取得到的裙带菜多糖羟自由基清除率结果影响不显著(P>0.05)。超声-酶解法的裙带菜多糖提取效果和及其羟自由基清除率能力明显优于超声波法,其结果具有显著性差异(P<0.01)。超声波-酶解结合方法提取裙带菜多糖,提取效率高,多糖清除自由基效果好。  相似文献   

7.
采用微波辅助提取法、超声辅助提取法、热水提取法、酶提法提取香菇多糖(polysaccharide of Lentinus edodes,LEP),获得4种相应的多糖。利用傅里叶红外光谱仪和高效阴离子交换色谱分析对4种多糖进行结构表征,并以提取得率和抗氧化活性为依据,筛选最优方法。结果显示4种多糖单糖组分基本相同,但摩尔比有明显差异。提取得率影响顺序为超声提取多糖微波提取多糖酶提取多糖热水浸提多糖。在4种多糖中,微波提取多糖含量最高(43.17%),远高于其他3种多糖,且蛋白质含量最低(3.31%)。抗氧化试验结果表明,微波提取多糖的羟自由基清除力最高,DPPH自由基清除力和还原力与其他多糖活性相当。综合考虑提取得率、多糖含量和抗氧化活性,微波提取为最优方法。  相似文献   

8.
以藜麦为固体培养基,利用香菇菌丝体将其发酵,通过正交试验设计探讨碳源、氮源、碳氮源添加比例、时间等因素对发酵产物中粗多糖含量的影响,测定最适发酵条件下发酵产物中粗多糖抗氧化活性。最终得出以粗多糖为目标产物的最适发酵条件为:碳源为淀粉,氮源为牛肉膏,碳氮源添加比例5:1,发酵时间15 d;在此条件下,香菇与藜麦的发酵产物中粗多糖含量达(58.89±1.33)mg/g,较未发酵藜麦提升了31倍;且其对DPPH·自由基和ABTS·^+自由基均表现出较好的体外清除效果,当粗多糖浓度为20 mg/mL时,其对DPPH·自由基和ABTS·^+自由基的清除能力均达到最高,分别为76.57%与60.16%。利用香菇菌丝体发酵藜麦后,能够大大提升藜麦培养基中多糖的含量,且发酵后的粗多糖具有较好的抗氧化能力,为发酵产物作为功能性食品的可行性提供一定数据支持。  相似文献   

9.
在单因素试验的基础上采用响应面法对北沙参多糖的提取工艺进行优化,得到超声波提取北沙参多糖的最佳工艺条件为:提取温度65℃,超声时间22 min,液料比22:1(mL/g),该条件下多糖提取率为12.13%。制备的北沙参多糖具有多糖的典型特征,总糖含量为90.4%,蛋白含量为1.22%,热降解温度为300.32℃。通过考察北沙参多糖对DPPH自由基(IC_(50)为1.99 mg/mL)、OH自由基(IC_(50)为1.71mg/mL)和α-葡萄糖苷酶(IC_(50)为5.23mg/mL)的清除或抑制能力,表明北沙参多糖具有一定的清除自由基的能力和潜在的降血糖活性。  相似文献   

10.
采用单因素试验和正交试验对核桃壳多糖的超声波辅助纤维素酶提取工艺条件进行优化,并对核桃壳多糖的抗氧化活性进行研究。结果表明,超声波辅助纤维素酶提取核桃壳多糖的最优工艺条件为:料液比1∶20,纤维素酶添加量1. 75%,提取温度45℃,提取时间90 min,超声波功率750W。在最优条件下,核桃壳多糖提取率为2. 20%。核桃壳多糖对DPPH自由基、羟基自由基、超氧阴离子自由基均表现出较好的清除能力,且在一定范围内对三者的清除作用呈现良好的量效关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号