首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 234 毫秒
1.
以淀粉型甘薯为原料,利用单因素试验研究不同淀粉乳质量浓度、pH值、压热温度、压热时间及冷却回生时间对甘薯三型抗性淀粉(resistant starch type 3,RS3)得率的影响,并通过响应面设计优化制备工艺。结果显示,响应面试验得出的最优制备条件为淀粉乳浓度13%、pH5.5、压热温度110℃、压热时间35 min,此时RS3得率为37.94%,与预测值仅相差0.92%,响应面模型与实际情况拟合良好。甘薯抗性淀粉RS3的体外抗消化特性研究表明,RS3的酶解率和模拟消化道的消化率低,展示很强的抗酶解、抗消化特性。电镜结果显示,RS3颗粒呈不规则块状,表面凹凸不平;结晶型以B型为主,颗粒有序度降低,双螺旋程度和结晶度提高,与原淀粉相比结构更加紧密,这些结构特性可以解释甘薯RS3的抗消化特性。  相似文献   

2.
以橡子原淀粉为原料,采用压热法制备橡子抗性淀粉,通过单因素试验,研究淀粉乳浓度、压热温度、压热时间和压热次数对抗性淀粉得率的影响。响应面分析法得到橡子抗性淀粉制备的最佳工艺条件为:淀粉乳浓度30%,压热时间29 min,压热温度122℃,压热次数4次,抗性淀粉得率为13.30%。并利用扫描电子显微镜观察淀粉颗粒形态,结果显示压热处理后的橡子抗性淀粉原颗粒结构形态遭到破坏,形成新的不规则晶体结构。  相似文献   

3.
酶法结合高压法制备甘薯回生抗性淀粉   总被引:2,自引:0,他引:2  
本试验以甘薯淀粉为原料,采用酶解-压热法制备RS3型抗性淀粉,研究了淀粉乳浓度、压热时间、压热温度、α-淀粉酶、预糊化时间、pH值以及冷藏时间和温度对抗性淀粉制备产率的影响。结果表明:甘薯回生抗性淀粉最佳制备条件为:甘薯淀粉乳浓度为10%;α-淀粉酶加量为120U/ml;预糊化时间为30min;最佳压热温度为120℃,压热处理时间为30min;老化温度为4℃,时间为12 h。采用此工艺制备甘薯回生抗性淀粉,其制备产率可达到7.365%。  相似文献   

4.
章丽琳  叶陵  张喻 《中国酿造》2015,34(12):105
为了提高抗性淀粉的得率,并获得抗性淀粉制备方法的最佳工艺参数,该试验以马铃薯淀粉为原料,抗性淀粉得率为评价指标,采用纤维素酶-压热法制备马铃薯抗性淀粉。研究淀粉乳浓度、酶添加量、酶解时间、压热温度、压热时间5个因素对马铃薯抗性淀粉得率的影响,在单因素试验的基础上,通过正交试验优化得出马铃薯抗性淀粉的最佳制备工艺条件,即淀粉乳含量25%、淀粉乳pH 5.0、酶用量30 U/mL、酶解时间50 min、压热温度125 ℃、压热时间30 min、老化温度4 ℃、老化时间18 h,在此条件下抗性淀粉的得率为30.33%。  相似文献   

5.
蕨根抗性淀粉的制备工艺研究   总被引:2,自引:0,他引:2  
压热法制备蕨根抗性淀粉的过程中,淀粉乳质量分数、压热温度、pH、压热时间和老化时间对蕨根抗性淀粉质量分数有不同程度的影响.通过三因素二次正交旋转组合设计,得出淀粉乳质量分数、pH、压热时间对蕨根抗性淀粉质量分数的影响大小次序为:淀粉乳质量分数>pH>压热时间.压热法制备蕨根抗性淀粉的最佳工艺条件为:淀粉乳质量分数28.7%,pH7.8,121℃压热处理38 min,4℃老化24 h,得到的蕨根抗性淀粉质量分数为10.94%.  相似文献   

6.
压热法制备淮山药抗性淀粉及其消化性   总被引:1,自引:0,他引:1  
研究压热法制备淮山药抗性淀粉的影响因素与抗性淀粉得率的关系,采用三因素二次通用旋转组合设计,优化淮山药抗性淀粉的制备工艺,试验结果表明:淀粉乳含量、pH值、压热时间对抗性淀粉得率的影响极显著,影响因素主次顺序依次为淀粉乳含量、淀粉乳pH值和压热时间;最佳工艺条件为淀粉乳含量25.20%,pH6.26,压热时间42.85 min,在此条件下测得的淮山药抗性淀粉得率为25.27%。In-Vitro体外模拟人体消化的试验表明,淮山药抗性淀粉较淮山药原淀粉更难消化,且抗性淀粉含量越大越难以消化。  相似文献   

7.
为探究微波-压热法制备马蹄抗性淀粉的最优工艺条件,该文以马蹄淀粉为原料,分别考察淀粉乳浓度、老化时间、微波时间、老化温度4个单因素对马蹄抗性淀粉得率的影响。选取淀粉乳浓度、老化时间、微波时间进行响应面工艺优化,并测定抗性淀粉与原淀粉的理化性质和结构特征。结果表明:马蹄抗性淀粉的最佳制备工艺为淀粉乳浓度23%、微波时间74 s、121℃下压热40 min,4℃下老化12 h。在该条件下,抗性淀粉得率为16.85%,模型预测值为16.89%,其相对误差<0.5%,验证响应面模型与实际情况得到了良好拟合,说明通过响应面方法得到的优化工艺非常可靠。理化性质测定发现马蹄抗性淀粉的溶解度、膨润度、冻融性显著高于原淀粉,而其持水性却低于原淀粉。  相似文献   

8.
研究了压热法制备荞麦抗性淀粉的工艺参数。比较了不同淀粉乳浓度、热处理温度、热处理时间、淀粉乳pH值对荞麦抗性淀粉得率的影响。采用三因素二次回归旋转正交组合设计,优化荞麦抗性淀粉制备参数,建立了各因子与荞麦抗性淀粉得率关系的数学回归模型,确定了最佳的制备条件:淀粉乳浓度为59.41%,压热处理温度为123.33℃,压热时间60.79min,荞麦抗性淀粉的产率理论最高值可达16.6053%。  相似文献   

9.
本文利用单因素实验在压热过程中研究了淀粉乳浓度、压热温度、压热时间、回生温度和回生时间5个因素对蚕豆抗性淀粉得率的影响。在此基础上,结合响应面试验优化制备工艺,并进一步通过X-射线衍射、傅里叶红外光谱和扫描电子显微镜分析了蚕豆抗性淀粉的结构表征。结果表明,蚕豆抗性淀粉的最佳制备工艺为:淀粉乳浓度31%,121 ℃下压热38 min,4 ℃下回生32 h。在该条件下,抗性淀粉得率为26.80%±0.82%,与预测值26.13%±1.50%相近,证明响应面模型与实际情况拟合良好。X-射线衍射结果表明,蚕豆淀粉颗粒呈椭球形,为A型淀粉;而抗性淀粉颗粒为不规则片层状或多边形堆积块状,为C型淀粉。红外光谱结果表明,在通过制备蚕豆抗性淀粉的过程中,没有发生化学反应,但产生了大量的分子间氢键。综上,本试验研究结果可为蚕豆抗性淀粉的制备及开发提供参考。  相似文献   

10.
为了提高板栗抗性淀粉含量,并获得抗性淀粉制备方法的最适工艺参数,本研究优化了压热—普鲁兰酶法制备板栗抗性淀粉的工艺,在单因素试验基础上,采用响应面法研究淀粉悬浮液质量分数、普鲁兰酶添加量、酶解时间和冷凝时间对抗性淀粉得率的影响,建立各因素与抗性淀粉得率关系的数学回归模型。最终根据实际工艺操作确定最佳的制备工艺条件为淀粉悬浮液质量分数11.00%,酶添加量9 PUN/g、酶解时间10 h、冷凝时间15 h。在该制备条件下,测得抗性淀粉得率为64.90%,基本符合理论预测值(65.70%)。试验证明,响应面法能够提高板栗抗性淀粉的制备率。  相似文献   

11.
本研究以红薯淀粉为原料,柠檬酸、丙酸、乳酸、盐酸分别为酸解剂,通过超声辅助酸解法制备抗性淀粉。探讨了超声时间、酸的种类和浓度、淀粉乳浓度、酸解时间各因素对抗性淀粉含量的影响。通过扫描电镜(SEM)、差示扫描量热法(DSC)及X-射线衍射(XRD)分析技术对产物进行表征。结果表明,制备抗性淀粉的优化条件为:以质量分数为1%的丙酸溶液酸解质量分数为20%的淀粉乳,依次经过超声处理15 min,恒温振荡4 h,冷冻干燥,其抗性淀粉的含量24.827%。淀粉经超声酸解处理后,其粒径明显增大,形貌由原来表面光滑的多面体颗粒状变为表面有褶皱的片状结构,晶型由A型转变为B型。  相似文献   

12.
优化了三偏磷酸钠制备抗消化性甘薯淀粉磷酸双酯的工艺条件.采用响应面法Box-Behnken试验设计,分析了三偏磷酸钠、pH值、酯化温度以及酯化时间对甘薯淀粉磷酸双酯抗消化性能的影响.结果表明其最佳制备工艺为:三偏磷酸钠添加量3.6%(以甘薯淀粉计),pH 10.5,酯化反应温度50℃,酯化时间2.1h.在此条件下制备的甘薯淀粉磷酸双酯淀粉抗消化性为(58.73±0.04)%.经DSC和RVA扫描分析表明甘薯淀粉磷酸双酯仍具有与甘薯原淀粉相似的糊化特性.  相似文献   

13.
酸解-水热处理对甘薯抗性淀粉形成的影响研究   总被引:10,自引:0,他引:10  
刘亚伟  张杰 《食品科学》2003,24(6):41-45
采用酸变性和沸水浴的方法,对甘薯淀粉进行处理,以抗性淀粉得率作为评价指标,通过正交试验和响应面分析,得出甘薯抗性淀粉最优制备条件为:酸解时间为1.44h、盐酸用量为1.28%、水与淀粉的比为8.32:1、沸水浴时间为3.08h;抗性淀粉得率13.91%。  相似文献   

14.
以甘薯淀粉为原料,采用超声波辅助乙醇碱法制备颗粒状冷水可溶性甘薯淀粉,系统研究了淀粉乳浓度、乙醇浓度、碱用量、超声波功率和超声波时间对冷水可溶淀粉溶解度的影响。在单因素试验基础上,通过Box-Behnken响应面优化制备条件,得到最佳的反应条件为:淀粉乳质量浓度4.0 g/100 m L,乙醇体积分数81%,超声波功率为300 W,超声时间22 min。经验证,在最佳条件下,所制得的甘薯淀粉溶解度达到96.38%,回归模型预测值与实测值的相对误差1%。研究结果表明,超声波在制备冷水可溶性甘薯淀粉方面有一定的应用前景。  相似文献   

15.
本研究通过考察紫甘薯全粉面蒸煮损失率、微观结构、流变学特性及抗性淀粉含量的变化,探讨加工过程中蒸制、老化和冷冻等处理条件对紫甘薯全粉面品质的影响。结果表明,经蒸制、老化或冷冻处理后,挤压制备紫甘薯全粉面的蒸煮损失率、抗性淀粉含量、微观结构及流变学特性均发生了变化。在老化时间为2~4h时,紫甘薯全粉面中抗性淀粉含量从3.01%增加至4.02%,老化时间的进一步延长则对抗性淀粉含量无显著影响;在蒸制时间为3~5 min范围内,抗性淀粉含量由3.41%增加至4.82%,而在5min~11min范围内则从4.82%降至2.40%。处理方式对紫甘薯全粉面表面微观结构变化影响显著,适宜的蒸制、老化或冷冻处理可以改善紫甘薯全粉面的微观结构,但处理时间过长反而导致其结构被破坏。未经处理的紫甘薯全粉面其储能模量和损耗模量得值均明显高于经过不同处理的紫甘薯全粉面,且其储能模量均明显高于损耗模量,弹性模量占主导地位。因此,适宜的蒸制、老化和冷冻等处理可以有效改善紫甘薯全粉面的整体品质。  相似文献   

16.
刘强  邬应龙  何靖柳 《食品科学》2011,32(20):13-16
以氧化甘薯淀粉(oxidation sweet potato starch,OSPS)为原料,制备氧化辛烯基琥珀酸甘薯淀粉酯(octenyl succinate anhydride-oxidation sweet potato starch,OSA-OSPS)。运用响应面分析(response surface method analysis,RSA)辛烯基琥珀酸酐(octenyl succinate anhydride,OSA)添加量、pH值、温度和时间对OSA-OSPS取代度(degree of substitution,DS)的影响,得出最佳制备工艺:酸酐添加量7%、pH8.40、温度40℃,反应时间10h。采用快速黏度分析仪(rapid viscosity analyzer,RVA)分析表明:氧化甘薯淀粉峰值黏度较低,而经过OSA酯化后,峰值黏度又会有一定程度的提高,且随DS的增加呈上升趋势。  相似文献   

17.
湿热处理对甘薯淀粉流变特性的影响   总被引:1,自引:0,他引:1  
目的:采用HAAKE MARSⅢ型流变仪研究不同湿热处理条件下甘薯淀粉的流变性。方法:通过控制湿热处理的水分(10%~30%)、温度(90~130 ℃)和时间(4~12 h)对甘薯淀粉进行湿热改性。结果:原淀粉与湿热改性淀粉的糊具有明显的剪切稀化行为,其流变曲线也服从Herschel-Bulkley模型。不同湿热处理条件下得淀粉糊浓度系数K、屈服应力τ0均低于原淀粉(K=14.816 Pa·sn,τ0原=10.322 Pa),流动特性指数n高于原淀粉(n=0.47)。随着湿热处理水分、温度与时间的增加,淀粉糊的K逐渐减小,τ0则先增后减,湿热处理水分20%,温度110 ℃,时间8 h的屈服应力最大(τ0上行线=5.683 Pa,τ0下行线=12.423 Pa)。动态流变学特性表明:不论湿热改性与否,甘薯淀粉糊的储能模量(G')均大于损耗模(G″)。并且相对于原淀粉,湿热改性甘薯淀粉糊的黏弹性明显增加。结论:经过湿热处理,甘薯淀粉糊的浓度系数与屈服应力下降,非牛顿性减弱,黏弹性显著提高,更适合作为食品加工的辅料和添加剂。  相似文献   

18.
中温α-淀粉酶处理提高甘薯回生抗性淀粉制备率   总被引:2,自引:1,他引:2  
以甘薯淀粉为原料,以抗性淀粉制备产率为考察指标,研究中温α–淀粉酶处理对RS3型抗性淀粉制备产率影响。结果表明,中温α–淀粉酶处理制备甘薯回生抗性淀粉最佳工艺条件为:淀粉乳10%,中温α–淀粉酶添加量为0.02 U/mL,酶解温度80℃,酶解时间15 min,淀粉乳pH7.0;在最佳条件下制备甘薯回生抗性淀粉产率达25.45%,比对照组提高1.68倍。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号