首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
以南酸枣多糖体积分数40%乙醇沉淀组分CAP?40 为研究对象,初步评价其体外抗氧化、降血糖与降血脂作用。分别利用高效液相凝胶渗透色谱及高效液相离子色谱测定CAP?40 的分子量与单糖组成,同时测定其对DPPH·和ABTS+·的清除率,α?葡萄糖苷酶和α?淀粉酶的抑制率,甘氨胆酸钠和牛磺胆酸钠的结合率以及胰脂肪酶的抑制率。结果表明,CAP?40 的洗脱曲线为单一对称峰,分子量约156 206 Da,单糖主要由葡萄糖、半乳糖醛酸、半乳糖、阿拉伯糖、鼠李糖组成,摩尔百分比分别为40.8%、40.7%、9.3%、5.1%、2.0%。CAP?40 浓度为1 mg/mL 时,对DPPH·和ABTS+·的清除率分别为(88.85±0.49)%和(87.13±1.63)%。浓度为16 mg/mL 时,CAP?40 对α?葡萄糖苷酶的抑制率为(71.28±2.34)%;在8 mg/mL 处,对α?淀粉酶的抑制率为(72.29±4.85)%。此外,浓度为20 mg/mL 时,CAP?40 对胰脂肪酶的抑制率为(26.34±1.41)%;在5 mg/mL 处,对甘氨胆酸钠和牛磺胆酸钠的结合率分别达到(31.87±4.53)%和(38.98±0.60)%。综上所述,南酸枣多糖CAP?40 具有一定的体外抗氧化、降血糖与降血脂作用,为开发天然降糖、降脂功能食品提供理论依据,也为南酸枣资源的综合开发利用提供新的思路。  相似文献   

2.
利用响应面优化微波辅助提取西番莲果皮多糖工艺,并研究其体外抗氧化活性。在单因素实验的基础上,根据Box-Behnken实验设计对料液比、提取时间和微波功率条件对多糖提取率的影响进行优化和分析。确定微波辅助提取最佳工艺参数:料液比1:27 g/mL,提取时间3.4 min,微波功率420 W,此条件下提取率为14.12%±0.41%,是传统水浴提取的1.5倍。西番莲果皮多糖体外抗氧化实验表明:微波辅助提取的西番莲果皮多糖在浓度为1.0 mg/mL时,DPPH·和·OH的清除率分别为74.02%和14.41%,其IC50值分别为0.374和61.06 mg/mL。  相似文献   

3.
以桦褐孔菌(Inonotus obliquus)菌丝体为试验材料,多糖提取率为评价指标,采用Box-Behnken 响应面法从提取时间、液料比和提取温度3 个因素优化桦褐孔菌菌丝体多糖的提取工艺,并研究粗多糖对α-葡萄糖苷酶和α-淀粉酶活性的影响。结果表明,桦褐孔菌菌丝体多糖的最佳提取条件为提取温度97 ℃、液料比51 ∶1(mL/g)、提取时间1.9 h、提取3 次,在此条件下多糖提取率为(8.02±0.45)%。体外酶抑制试验表明,桦褐孔菌菌丝体多糖浓度为10 mg/mL 时,对α-葡萄糖苷酶和α-淀粉酶的抑制率分别为(77.64±1.78)%和(39.20±1.17)%,二者的半抑制浓度(half maximal inhibitory concentration,IC50)分别为3.07 mg/mL 和17.20 mg/mL,对α-淀粉酶和α-葡萄糖苷酶的抑制作用明显,表明其具有较好的降血糖能力。  相似文献   

4.
以猕猴桃酿酒发酵后的果渣为原料,采用响应面法优化猕猴桃果渣总黄酮的微波辅助提取工艺,并测定其对DPPH·和ABTS+·的清除率,评价最佳工艺条件提取的总黄酮的抗氧化活性。结果表明,猕猴桃果渣总黄酮提取的最佳工艺条件为乙醇浓度50%、提取温度66℃、提取时间16 min,在此条件下,总黄酮得率为3.02%。猕猴桃果渣总黄酮提取物对DPPH·、ABTS+·具有不同程度的清除作用,当总黄酮提取物浓度为30.16 μg/mL时,对DPPH·清除率为83.08%,当总黄酮提取物浓度为12.08 μg/mL时,对ABTS+·清除率为97.36%,表明猕猴桃果渣总黄酮具有较好的抗氧化活性。  相似文献   

5.
该研究以山楂叶为研究材料,利用超声辅助提取法制备山楂叶黄酮(hawthorn leaf flavonoids,HLF),在单因素试验的基础上,通过响应面法优化提取工艺,随后利用AB-8大孔吸附树脂纯化粗提液,并对其体外抗氧化活性进行初步分析。结果表明:当乙醇体积分数为60%,料液比1∶17(g/mL),提取时间110 min,提取温度54℃时,黄酮提取率最高,为(7.53±0.15)%。经AB-8纯化后,HLF质量分数为(85.61±0.72)%,较纯化前提高了58.36%。体外抗氧化结果表明,100 μg/mL 的 HLF 对于 DPPH·、ABTS+·、·OH 以及 O2-·的抑制率分别为(78.88±4.76)%、(94.73±1.36)%、(91.10±4.64)%及(64.71±2.39)%。  相似文献   

6.
目的 优化超声波-酶法提取紫甘蓝花青素条件, 研究纯化紫甘蓝花青素提取物体外抗氧化活性、体外消化酶抑制活性。方法 以紫甘蓝粉末为原料, 采用pH示差法测定花青素提取量, 研究料液比、果胶酶添加量、酶解温度和提取时间对提取量的影响, 通过正交试验优化花青素提取条件。采用AB-8大孔树脂纯化紫甘蓝花青素粗提物, 以维生素C为对照, 评价纯化紫甘蓝花青素提取物对DPPH·、ABTS+·、·OH的清除能力, 以阿卡波糖为对照, 研究纯化紫甘蓝花青素提取物体外抑制α-葡萄糖苷酶和α-淀粉酶的能力。结果 紫甘蓝花青素最佳提取工艺是料液比1:40 (g:mL)、果胶酶添加量4 mg/g、酶解温度40℃, 提取时间10 min, 花青素提取量为(5.15±0.03) mg/g; 纯化紫甘蓝花青素提取物对ABTS+·清除能力与维生素C相当, DPPH·和·OH清除能力略低于维生素C; 纯化紫甘蓝花青素提取物对α-葡萄糖苷酶的半抑制浓度(half maximal inhibitory concentration, IC50)为(0.43±0.02) mg/mL, 对α-淀粉酶IC50为(9.17±0.34) mg/mL, 而阿卡波糖对α-葡萄糖苷酶的IC50为(0.02±0.00) μg/mL, 对α-淀粉酶的IC50为(8.83±0.27) μg/mL。结论 超声波-酶法可以有效提取紫甘蓝花青素, 纯化紫甘蓝花青素有优良的抗氧化活性, 具有一定的体外抑制消化酶能力, 研究结论可为紫甘蓝花青素在功能食品中的应用提供基础数据与参考。  相似文献   

7.
利用超声波辅助水提醇沉法提取省沽油粗多糖(Staphylea bumalda DC. polysaccharides,SDP)。应用单因素和响应面法优化提取工艺及比较不同提取方法所得省沽油粗多糖的清除自由基活性和降血糖活性。结果显示,省沽油粗多糖最佳提取条件为:料液比1:30 g/mL、提取温度72℃、提取时间2.0 h、超声波功率355 W,此条件下省沽油粗多糖的提取率为4.70%,与理论预测值4.75%基本一致。清除自由基实验表明,多糖浓度达到2.50 mg/mL时,在最佳提取条件下获得的省沽油粗多糖对.OH和DPPH.自由基清除率是同等条件下传统水浴提取粗多糖的1.2倍和1.38倍。其他条件相同,350 W超声波辅助提取的粗多糖对·OH清除作用最佳,清除率最高可达71.23%,350 W和400 W超声波辅助提取的粗多糖对DPPH·清除率均为85%左右。不同超声功率辅助提取的粗多糖清除自由基活性有一定差异。多糖的降血糖实验表明,省沽油粗多糖的降血糖作用具有一定的效果,对α-葡萄糖苷酶抑制率可以达到55.69%。  相似文献   

8.
本文采用缓冻协同微波辅助提取手段,通过单因素实验,确定合适的因素,采用响应面优化方法对黄秋葵多糖提取工艺条件进行优化;采用对硝基苯基-α-D-吡喃葡萄糖苷(pNPG)法测定黄秋葵多糖对α-葡萄糖苷酶活性的影响,通过小鼠实验,测定黄秋葵多糖对肾上腺素引起高血糖小鼠血糖水平的影响,从而探索黄秋葵多糖的降血糖作用。结果表明:通过响应面优化提取条件,确定黄秋葵多糖的最佳提取工艺条件是缓冻时间16 h,液料比40:1(mL/g),浸提时间2.2 h;浸提温度65℃,微波功率310 W,在此条件下,黄秋葵多糖的得率可达到17.17%,明显高于相对单一的提取工艺。黄秋葵多糖能够明显抑制α-葡萄糖苷酶的活性,在10 mg·mL-1剂量下抑制率达68.26%;且极显著降低肾上腺素引起高血糖小鼠的血糖水平(P<0.01)。缓冻协同微波处理能够显著提高黄秋葵多糖的得率,黄秋葵多糖具有良好的降血糖作用,具备开发成为预防和治疗糖尿病的市场应用与开发前景。  相似文献   

9.
以青藏高原狭果茶藨子果实为原料,采用微波辅助提取法结合响应面设计试验优化狭果茶藨子黄酮提取工艺参数。以胰脂肪酶抑制率、不同胆酸盐结合率为指标,评价纯化前后狭果茶藨子黄酮体外降血脂活性。结果表明微波辅助提取狭果茶藨子黄酮最佳工艺条件为:微波功率500 W,料液比1∶30(g/mL),提取时间8 min,此条件下黄酮提取率为22.36%。纯化后狭果茶藨子黄酮体外降血脂活性更强,对胰脂肪酶的抑制率最高达91.6%,比纯化前提高了16.81%;对胆酸钠、牛磺胆酸钠和甘氨胆酸钠IC50分别为3.301、1.499、1.847 mg/mL。表明狭果茶藨子具有开发天然降血脂功能性食品的前景,且黄酮类化合物是其发挥作用的主要活性成分。  相似文献   

10.
该文以酸浆宿萼为试材,研究料液比、超声功率、微波功率、协同时间对酸浆宿萼多糖提取量的影响,在单因素试验的基础上,采用四因素三水平的响应面法优选提取工艺参数,通过对α-葡萄糖苷酶、α-淀粉酶抑制能力测定检测酸浆宿萼多糖体外降糖活性。结果表明:最佳提取工艺为料液比1∶17(g/mL)、超声功率160 W、微波功率320 W、协同时间4 min;在该条件下,酸浆宿萼多糖提取量为(26.13±0.11)mg/g;体外降糖试验表明,酸浆宿萼多糖有降糖活性。  相似文献   

11.
为探究对羟基肉桂酸乙酯的降脂活性,本文采用酶反应动力学和分子对接技术来研究对羟基肉桂酸乙酯对胰脂肪酶的抑制类型和抑制机理。抑制动力学结果表明,对羟基肉桂酸乙酯对胰脂肪酶表现为可逆竞争型抑制(半抑制浓度IC50为41.07 μg/mL),其最大反应速率Vmax为2.61 μmol/L·min,抑制常数Ki为114.35 μg/mL;分子对接结果表明,对羟基肉桂酸乙酯可以与胰脂肪酶催化三联体中的氨基酸残基Ser152和His263形成强烈的氢键作用,且通过范德华力、氢键作用力和疏水作用力与胰脂肪酶的氨基酸残基作用,与底物p-NPB竞争酶的活性中心位点。本研究为对羟基肉桂酸乙酯在降脂功能食品中的应用提供了一定的理论依据。  相似文献   

12.
以芦笋老茎为原料,经提取、分离纯化获得芦笋老茎多糖,对不同浓度芦笋老茎多糖的DPPH·清除能力、·OH清除能力、还原能力、α-葡萄糖苷酶抑制率、α-淀粉酶抑制率等抗氧化及降血糖活性指标进行了研究。结果表明:在一定浓度范围内,随着芦笋老茎多糖浓度的增大,其对DPPH·的清除率呈逐渐上升趋势,存在一定的浓度依赖性;当浓度为3 mg/mL时,芦笋老茎多糖对DPPH自由基的清除率可达73.37%,与相同浓度的Vc清除率的差值约为20%。随着浓度的增加,芦笋老茎多糖对·OH清除率呈先上升后逐渐趋于平稳趋势,当浓度为1.5 mg/mL时,清除率可达90.56%,随后增速放缓;且当浓度低于1.5 mg/mL时,清除能力明显弱于Vc,高于1.5 mg/mL时,清除能力逐渐接近Vc。随着浓度的增加,芦笋老茎多糖的还原能力呈逐渐上升趋势,存在一定的浓度依赖性,且在相同浓度下,芦笋老茎多糖的还原能力要明显弱于Vc。在一定浓度范围内,芦笋老茎多糖对α-葡萄糖苷酶和α-淀粉酶的抑制率整体上存在一定的浓度依赖性,随着多糖浓度的增加,抑制率呈逐渐增强随后略有降低趋势,当多糖浓度为7 mg/mL时抑制率最大,抑制率分别可达87.46%和90.91%。说明芦笋老茎多糖具有较好的体外抗氧化及降血糖作用效果,为芦笋老茎的综合利用提供一定的应用指导。  相似文献   

13.
微波辅助提取枸杞多糖的工艺优化及其抗氧化性研究   总被引:2,自引:0,他引:2  
邱志敏  芮汉明 《食品工业科技》2012,33(7):220-223,227
利用响应面法优化枸杞多糖的微波辅助水提取工艺,得到最佳提取工艺为:微波功率300W,微波时间1.8min,液料比26∶1,枸杞粗多糖得率可以达到9.57%(w/w)。在此工艺条件下,微波提取枸杞多糖的DPPH.清除率比BHA低5%左右(0.1mg/mL浓度除外),但ORAC值及抗油脂酸败能力略高于BHA,总体来说抗氧化活性与水提多糖相近。  相似文献   

14.
目的:研究甘草多糖的抗氧化作用及对1型糖尿病(Type 1 diabetes mellitus, T1DM)小鼠降血糖作用。方法:提取并纯化甘草多糖,苯酚硫酸法测定多糖含量,采用DPPH·、ABTS+·的清除率测定其抗氧化性。小鼠适应性喂养7 d后,对其进行腹腔注射STZ(30 mg/kg·BW),建立T1DM模型,实验分为正常组、模型组、甘草多糖高剂量组(400 mg/kg·BW)、甘草多糖低剂量组(200 mg/kg·BW)、阳性组(二甲双胍200 mg/kg·BW),实验期间测定小鼠基础指标和小鼠脂代谢及氧化应激相关指标的变化。结果:甘草多糖含量为690 mg/g,在1000 μg/mL质量浓度下其对DPPH·、ABTS+·的清除能力分别为82.84%±0.80%,85.52%±2.27%。在动物实验中,第8周时,甘草多糖高剂量组小鼠体重达到了20.84±0.87 g,与阳性组无显著性差异(P>0.05)。高剂量组中空腹血糖值(Fasting blood glucose, FBG)水平为15.9 mmol/L,与阳性组无显著性差异(P>0.05),且能显著提高葡萄糖耐量(Oral Glucose Tolerance Test, OGTT)水平(P<0.05)。甘草多糖高剂量组小鼠的总胆固醇(Total Cholesterol, TC)、甘油三酯(Triglyceride, TG)、高密度脂蛋白 (High-density lipoprotein, HDL-C)、低密度脂蛋白(Low-density lipoprotein, LDL-C)分别为2.79±0.36、0.98±0.12、1.28±0.23、1.67±0.29 mmol/L,与模型组有极显著性差异(P<0.01),且能够极显著升高超氧化物歧化酶(Super Oxide Dismutase, SOD)、过氧化氢酶(Catalase, CAT)、总谷胱甘肽(Glutathione, GSH)的含量,极显著降低丙二醛(Malondialdehyde, MDA)含量(P<0.01)。结论:甘草多糖具有较好的抗氧化性,可以通过改善T1DM小鼠脂代谢水平和氧化应激水平从而起到降血糖作用。  相似文献   

15.
以莲藕为原料,在单因素试验基础上,利用响应面分析优化莲藕多酚提取工艺条件,并测定其抗氧化、降血糖和降尿酸活性.结果 表明:莲藕多酚提取最优工艺参数为液料比22∶1(mL/g)、提取温度53℃、提取时间41 min,在此条件下多酚提取量为(359.55±1.20)mg/100 g.体外抗氧化活性结果显示,1,1-二苯基-...  相似文献   

16.
为了优化橘皮粗多糖的微波提取工艺,评价橘皮粗多糖的抗氧化活性;通过Box-Behnken的中心组合设计及响应面法(RSM)建立了微波提取时间(min)、料液比(g/mL)、微波功率(W)的二次回归模型,对橘皮多糖的最佳微波提取工艺条件进行优化;并通过Fenton反应和有机自由基(DPPH.)法对其进行体外抗氧化活性测试。实验表明,最佳提取条件为微波提取时间18min、料液比1:25(g/mL)、微波功率250W,在该条件下橘皮粗多糖的提取得率为33.71%,高于传统回流方法(15.75%)。橘皮粗多糖对.OH和DPPH.有显著的清除作用,可以探索作为食品工业和制药行业的天然抗氧化剂。  相似文献   

17.
对辣木叶中黄酮类化合物的结构进行分析,并测定其对胰脂肪酶的抑制作用及抑制作用类型。以70%乙醇溶液为提取溶剂,用微波辅助提取法提取辣木叶黄酮,提取率达到(5.53±0.11)%;用聚酰胺层析柱对获得的粗提物进行纯化,冷冻干燥得到样品粉末,测定其总黄酮含量为(661.10±9.20)mg/g。借助超高效液相色谱-四极杆/静电场轨道阱质谱联用技术对纯化后的辣木叶黄酮结构进行分析,共鉴定出11?个黄酮类化合物。以对硝基苯丁酸酯为底物,测定了辣木叶黄酮对胰脂肪酶的抑制活性,结果表明纯化后的辣木叶黄酮对胰脂肪酶有较好的抑制作用,半数抑制浓度(IC50)为0.94?mg/mL,通过Lineweaver-Burk法测定出其抑制作用类型为非竞争性抑制。  相似文献   

18.
以木瓜皮为原料,研究了木瓜皮多酚和黄酮的提取工艺及抗氧化、酪氨酸酶和胰脂肪酶抑制活性。在单因素实验基础上采用正交试验研究超声温度、超声时间、乙醇浓度、料液比对木瓜皮多酚和黄酮含量的影响,并测定木瓜皮对DPPH自由基和ABTS自由基的清除能力以及对酪氨酸酶和胰脂肪酶的抑制活性。结果表明,木瓜皮多酚和黄酮的最佳提取条件为:超声温度40 ℃,超声时间60 min,乙醇浓度60%,料液比1:25 g/mL,在此条件下多酚和黄酮含量分别为(82.00±0.65)mg/g和(162.76±2.82)mg/g。抗氧化活性实验结果表明,木瓜皮提取物对DPPH自由基和ABTS自由基的清除率分别为(94.79%±0.10%)和(96.94%±0.23%)。抑制酶活性实验结果表明,木瓜皮提取物对分别以L-Tyr和L-Dopa为底物的酪氨酸酶的抑制率为(83.33%±6.80%)和(67.12%±0.32%),对胰脂肪酶的抑制率为(82.78%±1.28%),说明木瓜皮具有较强的抗氧化能力、酪氨酸酶及胰脂肪酶抑制活性。  相似文献   

19.
本文研究海绵胶煤炱菌(竹燕窝)多糖的单糖组成及体外抗氧化活性。采用超声波辅助提取方法提取海绵胶煤炱菌多糖,通过高效液相色谱(HPLC)分析单糖组成,并通过DPPH·、ABTS+·和·OH的清除能力评价其抗氧化能力。结果表明,海绵胶煤炱菌多糖得率为9.61%,总糖含量为70.92±1.530 g/100 g,单糖组成为甘露糖、葡萄糖、半乳糖,摩尔比为1.35:212:1。体外抗氧化实验表明,海绵胶煤炱菌多糖对DPPH·、ABTS+·和·OH清除能力与多糖浓度成正相关,其IC50分别为(0.796±0.002)、(0.923±0.012)和(1.993±0.026) mg/mL。本实验证明了海绵胶煤炱菌多糖是一种天然的抗氧化资源,可以进一步研究海绵胶煤炱菌多糖的其他生物活性,为深度开发海绵胶煤炱菌多糖在食品、医药和化妆品等领域中的应用提供依据。  相似文献   

20.
本研究采用超声波辅助热水浸提法提取甘薯渣粗多糖,经单因素实验和响应面优化提取工艺参数,并通过酶法脱蛋白、H2O2法脱色和Superose 1210/300 GL凝胶柱对多糖进行分离纯化,得到甘薯渣多糖.采用紫外光谱法、红外光谱法和高效液相色谱法对甘薯渣多糖进行结构鉴定,在此基础上进一步对甘薯渣多糖进行抗氧化活性测定以及...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号