首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Survey on computation offloading in mobile edge computing   总被引:1,自引:0,他引:1  
Computation offloading in mobile edge computing would transfer the resource intensive computational tasks to the edge network.It can not only solve the shortage of mobile user equipment in resource storage,computation performance and energy efficiency,but also deal with the problem of resource occupation,high latency and network load compared to cloud computing.Firstly the architecture of MEC was introduce and a comparative analysis was made according to various deployment schemes.Then the key technologies of computation offloading was studied from three aspects of decision on computation offloading,allocation of computing resource within MEC and system implement of MEC.Based on the analysis of MEC deployment scheme in 5G,two optimization schemes on computation offloading was proposed in 5G MEC.Finally,the current challenges in the mobility management was summarized,interference management and security of computation offloading in MEC.  相似文献   

2.
为解决偏远地区或突发灾害等场景中的物联网(Internet of Things, IoT)设备的任务计算问题,构建了一个非正交多址接入(Non-orthogonal Multiple Access, NOMA)-IoT(NOMA-IoT)下多无人机(Unmanned Aerial Vehicle, UAV)辅助的NOMA多址边缘计算(Multiple Access Edge Computing, MEC)系统。该系统中设备的计算能耗、卸载能耗和MEC服务器计算能耗直接受同信道干扰、计算资源和发射功率的影响,可通过联合优化卸载策略、计算资源和发射功率最小化系统加权总能耗。根据优化问题的非凸性和复杂性,提出了一种有效的迭代算法解决:首先,对固定卸载策略,计算资源和发射功率分配问题可通过连续凸逼近转化为可解的凸问题;其次,对固定计算资源和发射功率,利用联盟形成博弈解决卸载策略问题,以最小化IoT设备之间的同信道干扰。仿真结果表明,较OMA接入方式,NOMA接入方式减少本地计算能耗、卸载能耗及计算能耗约20%;较无卸载策略方法,包含卸载策略方法在减少系统加权总能耗方面效果较为明显。  相似文献   

3.
Mobile Internet services are developing rapidly for several applications based on computational ability such as augmented/virtual reality, vehicular networks, etc. The mobile terminals are enabled using mobile edge computing (MEC) for offloading the task at the edge of the cellular networks, but offloading is still a challenging issue due to the dynamism, and uncertainty of upcoming IoT requests and wireless channel state. Moreover, securing the offloading data enhanced the challenges of computational complexities and required a secure and efficient offloading technique. To tackle the mentioned issues, a reinforcement learning-based Markov decision process offloading model is proposed that optimized energy efficiency, and mobile users' time by considering the constrained computation of IoT devices, moreover guarantees efficient resource sharing among multiple users. An advanced encryption standard is employed in this work to fulfil the requirements of data security. The simulation outputs reveal that the proposed approach surpasses the existing baseline models for offloading overhead and service cost QoS parameters ensuring secure data offloading.  相似文献   

4.
移动边缘计算(MEC)通过将计算任务卸载到MEC服务器上,在缓解智能移动设备计算负载的同时,可以降低服务时延。然而目前在MEC系统中,关于任务卸载和资源分配仍然存在以下问题:1)边缘节点间缺乏协作;2)计算任务到达与实际环境中动态变化的特征不匹配;3)协作式任务卸载和资源分配动态联合优化问题。为解决上述问题,文章在协作式MEC架构的基础上,提出了一种基于多智能体的深度确定性策略梯度算法(MADDPG)的任务卸载和资源分配算法,最小化系统中所有用户的长期平均成本。仿真结果表明,该算法可以有效降低系统的时延及能耗。  相似文献   

5.
With the widespread application of wireless communication technology and continuous improvements to Internet of Things (IoT) technology, fog computing architecture composed of edge, fog, and cloud layers have become a research hotspot. This architecture uses Fog Nodes (FNs) close to users to implement certain cloud functions while compensating for cloud disadvantages. However, because of the limited computing and storage capabilities of a single FN, it is necessary to offload tasks to multiple cooperating FNs for task completion. To effectively and quickly realize task offloading, we use network calculus theory to establish an overall performance model for task offloading in a fog computing environment and propose a Globally Optimal Multi-objective Optimization algorithm for Task Offloading (GOMOTO) based on the performance model. The results show that the proposed model and algorithm can effectively reduce the total delay and total energy consumption of the system and improve the network Quality of Service (QoS).  相似文献   

6.
The sudden surge of various applications poses great challenges to the computation capability of mobile devices. To address this issue, computation offloading to multi-access edge computing(MEC) was proposed as a promising paradigm. This paper studies partial computation offloading scenario by considering time delay and energy consumption, where the task can be splitted into several blocks and computed both in local devices and MEC, respectively. Since the formulated problem is a nonconvex probl...  相似文献   

7.
With the development of the mobile communication technology, a wide variety of envisioned intelligent transportation systems have emerged and put forward more stringent requirements for vehicular communications. Most of computation-intensive and power-hungry applications result in a large amount of energy consumption and computation costs, which bring great challenges to the on-board system. It is necessary to exploit traffic offloading and scheduling in vehicular networks to ensure the Quality of Experience (QoE). In this paper, a joint offloading strategy based on quantum particle swarm optimization for the Mobile Edge Computing (MEC) enabled vehicular networks is presented. To minimize the delay cost and energy consumption, a task execution optimization model is formulated to assign the task to the available service nodes, which includes the service vehicles and the nearby Road Side Units (RSUs). For the task offloading process via Vehicle to Vehicle (V2V) communication, a vehicle selection algorithm is introduced to obtain an optimal offloading decision sequence. Next, an improved quantum particle swarm optimization algorithm for joint offloading is proposed to optimize the task delay and energy consumption. To maintain the diversity of the population, the crossover operator is introduced to exchange information among individuals. Besides, the crossover probability is defined to improve the search ability and convergence speed of the algorithm. Meanwhile, an adaptive shrinkage expansion factor is designed to improve the local search accuracy in the later iterations. Simulation results show that the proposed joint offloading strategy can effectively reduce the system overhead and the task completion delay under different system parameters.  相似文献   

8.
In this paper, we study the task offloading optimization problem in satellite edge computing environments to reduce the whole communication latency and energy consumption so as to enhance the offloading success rate. A three-tier machine learning framework consisting of collaborative edge devices, edge data centers, and cloud data centers has been proposed to ensure an efficient task execution. To accomplish this goal, we also propose a Q-learning-based reinforcement learning offloading strategy in which both the time-sensitive constraints and data requirements of the computation-intensive tasks are taken into account. It enables various types of tasks to select the most suitable satellite nodes for the computing deployment. Simulation results show that our algorithm outperforms other baseline algorithms in terms of latency, energy consumption, and successful execution efficiency.  相似文献   

9.
移动边缘计算(Mobile Edge Computing,MEC)将云服务器的计算资源扩展到更靠近用户一侧的网络边缘,使得用户可以将任务卸载到边缘服务器,从而克服原先云计算中将任务卸载到云服务器所带来的高时延问题。首先介绍了移动边缘计算的基本概念、基本框架和应用场景,然后围绕卸载决策、联合资源分配的卸载决策分别从单MEC服务器和多MEC服务器两种场景总结了任务卸载技术的研究现状,最后结合当前MEC卸载技术中存在的不足展望了未来MEC卸载技术的研究。  相似文献   

10.
The rapid growth of mobile internet services has yielded a variety of computation-intensive applications such as virtual/augmented reality. Mobile Edge Computing (MEC), which enables mobile terminals to offload computation tasks to servers located at the edge of the cellular networks, has been considered as an efficient approach to relieve the heavy computational burdens and realize an efficient computation offloading. Driven by the consequent requirement for proper resource allocations for computation offloading via MEC, in this paper, we propose a Deep-Q Network (DQN) based task offloading and resource allocation algorithm for the MEC. Specifically, we consider a MEC system in which every mobile terminal has multiple tasks offloaded to the edge server and design a joint task offloading decision and bandwidth allocation optimization to minimize the overall offloading cost in terms of energy cost, computation cost, and delay cost. Although the proposed optimization problem is a mixed integer nonlinear programming in nature, we exploit an emerging DQN technique to solve it. Extensive numerical results show that our proposed DQN-based approach can achieve the near-optimal performance.  相似文献   

11.
Bing LIANG  Wen JI 《通信学报》2005,41(10):25-36
A computation offloading scheme based on edge-cloud computing was proposed to improve the system utility of multiuser computation offloading.This scheme improved the system utility while considering the optimization of edge-cloud resources.In order to tackle the problems of computation offloading mode selection and edge-cloud resource allocation,a greedy algorithm based on submodular theory was developed by fully exploiting the computing and communication resources of cloud and edge.The simulation results demonstrate that the proposed scheme effectively reduces the delay and energy consumption of computing tasks.Additionally,when computing tasks are offloaded to edge and cloud from devices,the proposed scheme still maintains stable system utilities under ultra-limited resources.  相似文献   

12.
Mobile Edge Computing (MEC) has been considered a promising solution that can address capacity and performance challenges in legacy systems such as Mobile Cloud Computing (MCC). In particular, such challenges include intolerable delay, congestion in the core network, insufficient Quality of Experience (QoE), high cost of resource utility, such as energy and bandwidth. The aforementioned challenges originate from limited resources in mobile devices, the multi-hop connection between end-users and the cloud, high pressure from computation-intensive and delay-critical applications. Considering the limited resource setting at the MEC, improving the efficiency of task offloading in terms of both energy and delay in MEC applications is an important and urgent problem to be solved. In this paper, the key objective is to propose a task offloading scheme that minimizes the overall energy consumption along with satisfying capacity and delay requirements. Thus, we propose a MEC-assisted energy-efficient task offloading scheme that leverages the cooperative MEC framework. To achieve energy efficiency, we propose a novel hybrid approach established based on Particle Swarm Optimization (PSO) and Grey Wolf Optimizer (GWO) to solve the optimization problem. The proposed approach considers efficient resource allocation such as sub-carriers, power, and bandwidth for offloading to guarantee minimum energy consumption. The simulation results demonstrate that the proposed strategy is computational-efficient compared to benchmark methods. Moreover, it improves energy utilization, energy gain, response delay, and offloading utility.  相似文献   

13.
To improve the efficiency of computation offloading,a hierarchical task offloading framework based on device-to-device (D2D) communication,mobile edge computing and cloud computing was proposed,in which cooperative D2D relay technology was introduced to assist users to access remote computing resources.Considering the negative effects of uplink channel congestion,limited edge computing capability,D2D reuse interference and backhaul delay of cloud computing in the multi-user scenario of the proposed framework,a game theory based offloading scheduling and load balancing scheme was developed by fully taking advantage of the computing and communication resources in the proposed framework.The simulation results demonstrate that the proposed scheme can effectively reduce end-to-end delay and offloading energy consumption,and also has good stability even when the network resources are limited.  相似文献   

14.
In this paper, we study a UAV-based fog or edge computing network in which UAVs and fog/edge nodes work together intelligently to provide numerous benefits in reduced latency, data offloading, storage, coverage, high throughput, fast computation, and rapid responses. In an existing UAV-based computing network, the users send continuous requests to offload their data from the ground users to UAV–fog nodes and vice versa, which causes high congestion in the whole network. However, the UAV-based networks for real-time applications require low-latency networks during the offloading of large volumes of data. Thus, the QoS is compromised in such networks when communicating in real-time emergencies. To handle this problem, we aim to minimize the latency during offloading large amounts of data, take less computing time, and provide better throughput. First, this paper proposed the four-tier architecture of the UAVs–fog collaborative network in which local UAVs and UAV–fog nodes do smart task offloading with low latency. In this network, the UAVs act as a fog server to compute data with the collaboration of local UAVs and offload their data efficiently to the ground devices. Next, we considered the Q-learning Markov decision process (QLMDP) based on the optimal path to handle the massive data requests from ground devices and optimize the overall delay in the UAV-based fog computing network. The simulation results show that this proposed collaborative network achieves high throughput, reduces average latency up to 0.2, and takes less computing time compared with UAV-based networks and UAV-based MEC networks; thus, it can achieve high QoS.  相似文献   

15.
随着物联网(IoT)迅速发展,移动边缘计算(MEC)在提供高性能、低延迟计算服务方面的作用日益明显。然而,在面向IoT业务的MEC(MEC-IoT)时变环境中,不同边缘设备和应用业务在时延和能耗等方面具有显著的异构性,对高效的任务卸载及资源分配构成严峻挑战。针对上述问题,该文提出一种动态的分布式异构任务卸载算法(D2HM),该算法利用分布式博弈机制并结合李雅普诺夫优化理论,设计了一种资源的动态报价机制,并实现了对不同业务类型差异化控制和计算资源的弹性按需分配,仿真结果表明,所提的算法可以满足异构任务的多样化计算需求,并在保证网络稳定性的前提下降低系统的平均时延。  相似文献   

16.
In order to achieve the best balance between latency,computational rate and energy consumption,for a edge access network of IoV,a distribution offloading algorithm based on deep Q network (DQN) was considered.Firstly,these tasks of different vehicles were prioritized according to the analytic hierarchy process (AHP),so as to give different weights to the task processing rate to establish a relationship model.Secondly,by introducing edge computing based on DQN,the task offloading model was established by making weighted sum of task processing rate as optimization goal,which realized the long-term utility of strategies for offloading decisions.The performance evaluation results show that,compared with the Q-learning algorithm,the average task processing delay of the proposed method can effectively improve the task offload efficiency.  相似文献   

17.
基于单一边缘节点计算、存储资源的有限性及大数据场景对高效计算服务的需求,本文提出了一种基于深度强化学习的云边协同计算迁移机制.具体地,基于计算资源、带宽和迁移决策的综合性考量,构建了一个最小化所有用户任务执行延迟与能耗权重和的优化问题.基于该优化问题提出了一个异步云边协同的深度强化学习算法,该算法充分利用了云边双方的计...  相似文献   

18.
绳韵  许晨  郑光远 《电信科学》2022,38(2):35-46
为了提高移动边缘计算(mobile edge computing,MEC)网络的频谱效率,满足大量用户的服务需求,建立了基于非正交多址接入(non-orthogonal multiple access,NOMA)的超密集MEC系统模型。为了解决多个用户同时卸载带来的严重通信干扰等问题,以高效利用边缘服务器资源,提出了一种联合任务卸载和资源分配的优化方案,在满足用户服务质量的前提下最小化系统总能耗。该方案联合考虑了卸载决策、功率控制、计算资源和子信道资源分配。仿真结果表明,与其他卸载方案相比,所提方案可以在满足用户服务质量的前提下有效降低系统能耗。  相似文献   

19.
李斌  徐天成 《电讯技术》2023,63(12):1894-1901
针对具有依赖关系的计算密集型应用任务面临的卸载决策难题,提出了一种基于优先级的深度优先搜索调度策略。考虑到用户能量受限和移动性,构建了一种联合用户下行能量捕获和上行计算任务卸载的网络模型,并在此基础上建立了端到端优化目标函数。结合任务优先级及时延约束,利用深度强化学习自学习的优势,将任务卸载决策问题建模为马尔科夫模型,并设计了基于任务相关性的Dueling Double DQN(D3QN)算法对问题进行求解。仿真数据表明,所提算法较其他算法能够满足更多用户的时延要求,并能减少9%~10%的任务执行时延。  相似文献   

20.
To meet the demands of large-scale user access with computation-intensive and delay-sensitive applications, combining ultra-dense networks (UDNs) and mobile edge computing (MEC)are considered as important solutions. In the MEC enabled UDNs, one of the most important issues is computation offloading. Although a number of work have been done toward this issue, the problem of dynamic computation offloading in time-varying environment, especially the dynamic computation offloading problem for multi-user, has not been fully considered. Therefore, in order to fill this gap, the dynamic computation offloading problem in time-varying environment for multi-user is considered in this paper. By considering the dynamic changes of channel state and users queue state, the dynamic computation offloading problem for multi-user is formulated as a stochastic game, which aims to optimize the delay and packet loss rate of users. To find the optimal solution of the formulated optimization problem, Nash Q-learning (NQLN) algorithm is proposed which can be quickly converged to a Nash equilibrium solution. Finally, extensive simulation results are presented to demonstrate the superiority of NQLN algorithm. It is shown that NQLN algorithm has better optimization performance than the benchmark schemes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号