首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 15 毫秒
1.
The conservative single-layered wound dressing system is decomposed when mixed in polyvinyl alcohol (PVA) solution, which means it cannot be used with a temperature-sensitive drug. The goal of this investigation was to make an amniotic membrane extract (AME)-loaded double-layered wound dressing with an improved healing result compared to the conservative single-layered wound dressing systems. The double-layered wound dressing was developed with PVA/sodium alginate using a freeze–melting technique; one layer was PVA layer and the other was the drug-loaded sodium alginate layer. Its gel properties were assessed compared to single-layered wound dressings. Moreover, in vivo wound-healing effects and histopathology were calculated compared to commercial products. The double-layered wound dressing gave a similar gel fraction and Young’s module as single-layered wound bandages developed with only PVA, and a similar inflammation ability and WVTR as single-layered wound dressings developed with PVA and sodium alginate. Our data indicate that these double-layered wound bandages were just as swellable, but more elastic and stronger than single-layered wound dressings comprised of the same polymers and quantities, possibly giving an acceptable level of moisture and accumulation of exudates in the wound zone. Compared to the commercial product, the double-layered wound dressing comprising 6.7% PVA, 0.5% sodium alginate and 0.01% AME significantly enhanced the wound-healing effect in the wound-healing test. Histological investigations showed that superior full-thickness wound-healing effects compared to the commercial product. Therefore, the double-layered wound dressing would be an outstanding wound-dressing system with improved wound healing and good gel property.  相似文献   

2.
3.
A water absorption biomaterial, sodium carboxymethylation-functionalized chitosan fibers (Na-NOCC fibers) were prepared, applied for cutaneous wound repair, and characterized by FTIR and NMR. The water absorption of Na-NOCC fibers increased significantly with substitution degree rising, from 3.2 to 6.8 g/g, and higher than that of chitosan fibers (2.2 g/g) confirmed by swelling behavior. In the antibacterial action, the high degree of substitution of Na-NOCC fibers exhibited stronger antibacterial activities against E. coli (from 66.54% up to 88.86%). The inhibition of Na-NOCC fibers against S. aureus were above 90%, and more effective than E. coli. The cytotoxicity assay demonstrated that Na-NOCC2 fibers were no obvious cytotoxicity to mouse fibroblasts. Wound healing test and histological examination showed that significantly advanced granulation tissue and capillary formation in the healing-impaired wounds treated with Na-NOCC fibers, as compared to those treated with gauze, which demonstrated that Na- NOCC fibers could promote skin repair and might have great application for wound healing.  相似文献   

4.
In general, the systems intended for the treatment and recovery of wounds, seek to act as a coating for the damaged area, maintaining an adequate level of humidity, reducing pain, and preventing the invasion and proliferation of microorganisms. Although many of the systems that are currently on the market meet the purposes mentioned above, with the arrival of nanotechnology, it has sought to improve the performance of these coatings. The variety of nano-systems that have been proposed is very extensive, including the use of very different materials (natural or synthetic) ranging from polymers or lipids to systems derived from microorganisms. With the objective of improving the performance of the systems, seeking to combat several of the problems that arise in a wound, especially when it is chronic, these materials have been combined, giving rise to nanocomposites or scaffolds. In recent years, the interest in the development of systems for the treatment of wounds is notable, which is reflected in the increase in publications related to the subject. Therefore, this document presents generalities of systems involving nanocarriers, mentioning some examples of representative systems of each case.  相似文献   

5.
Wound healing is a complex process involving the delicate interaction between elements that vary widely in nature and size scales, from the nanometre level, such as molecules, to cells measured in micrometres, and fibres with width and length measured on both scales. Hybrid approaches, where each species is represented by a model on an appropriate size scale, have received attention recently. In this study, we provide a review of earlier work on such hybrid models of wound healing. General models for each of the element types involved in dermal wound healing used in this research are described: cells, modelled as discrete individuals; chemicals, modelled as continua; and fibres, modelled with a novel tensorial representation. Techniques for integrating such disparate models are outlined. A six-species model (fibrin, collagen, macrophages, fibroblasts, transforming growth factor-β (TGF-β) and tissue plasminogen activator) of dermal wound healing is presented. The role of the cytokine TGF-β in the healing cascade is investigated using the model, along with its role in the degree of scarring in the healed tissue.  相似文献   

6.
A chronic wound in diabetic patients is a major public health concern withsocioeconomic and clinical manifestations.The underlying medical condition of diabeticpatients deteriorates the wound through physiological,metabolic,molecular,and cellularpathologies.Consequently,a wound enters a vicious pathological inflammatory cycle.Many therapeutic approaches are in practice to manage diabetic wounds hence ensuringthe regeneration process.Polymer-based biomaterials have come up with hightherapeutic promises.Many efforts have been devoted,over the years,to build aneffective wound healing material using polymers.The electrospinning technique,although not new,has turned out to be one of the most effective strategies in buildingwound healing biomaterials due to the special structural advantages of electrospunnanofibers over the other formulations.In this review,careful integration of allelectrospinning approaches has been presented which will not only give an insight intothe current updates but also be helpful in the development of new therapeutic materialconsidering pathophysiological conditions of a diabetic wound.  相似文献   

7.
Objective: Development of a hydrogel containing rutin at 0.025% (w/w) and evaluation of its in vivo efficacy in cutaneous wound healing in rats.

Methods: Hydrogels were prepared using Carbopol Ultrez® 10 NF and an aqueous dispersion of rutin in polysorbate 80. Hydrogels were characterized by means of pH measurement, rheological and spreadability analysis and rutin content determination by liquid chromatography. The in vivo healing effect was evaluated through the regression of skin lesions in rats and by analysis of oxidative stress.

Results and discussion: Hydrogels showed adequate pH values (5.50–6.50) and pseudoplastic non-Newtonian behavior. After 5 days of treatment of wounds, hydrogels containing rutin presented a higher decrease in the wound area compared to the control hydrogels. Analysis of the oxidative stress showed a decrease in lipid peroxidation and protein carbonyl content as well as an increase in catalase activity after the treatment with the hydrogel containing rutin. Furthermore, this treatment increased total protein levels.

Conclusion: This study shows for the first time the feasibility of using dermatological formulations containing rutin to improve skin wound healing.  相似文献   

8.
5-Aminosalicylic acid (5-ASA) is an aminosalicylate anti-inflammatory drug, which is also known as mesalazine or mesalamine. Currently employed in treating inflammatory bowel disease, ulcerative colitis, inflamed anus or rectum, and maintain remission in Crohn's disease. Evidence from the researchers highlighted its significant re-epithelization in allergic asthma, aphthous, and gastric ulcerative conditions. The objective of the study was to formulate the pluronic lecithin organogel (PLO) containing 5-ASA and evaluate its wound-healing ability in a full thickness excision wound rat model. The data obtained from in silico docking studies revealed 5-ASA is having an affinity towards the transforming growth factor-beta (TGF-β) specifically towards beta1. Among various formulations prepared (F1 to F8), F1, and F6 have shown a maximum in vitro drug release with optimum pH and viscosity. From MTT assay it was found that selected PLO formulations showed no toxicity and enhanced cell proliferation in HaCaT cell lines. In vivo wound-healing studies in albino Wistar rats has revealed that PLO accelerates wound closure and reepithelization to the statistically significant level on day 3 (p?相似文献   

9.
采用聚乙烯醇为基础材料,以季铵盐壳聚糖为抗菌剂,丙三醇为辅料,采用溶液共混法制备聚乙烯醇/季铵盐壳聚糖复合水凝胶作为皮肤烫伤敷料,通过流变实验、抗菌实验、细胞实验以及动物活体实验考察复合水凝胶的综合性能。结果表明,制备的复合水凝胶具有适宜的粘度(22~35Pa·s),涂覆于皮肤表面呈现较好的粘附性能;对大肠杆菌和金黄色葡萄球菌均有良好的抑菌作用,同时具有优良的细胞相容性;复合水凝胶敷料对皮肤刺激极小,昆明鼠深Ⅱ度烫伤修复实验表明,凝胶敷料可有效加快创面愈合速度以及瘢痕的形成,创面愈合从一般的数周缩减至3周左右,大大缩短创面修复时间,且愈后瘢痕组织小。  相似文献   

10.
Diabetes mellitus is most common disorder characterize by hyperglycemia. Chronic hyperglycemia may lead to over production of free radicals thereby results in oxidative stress which impaired healing of wounds. Ferulic acid (FA) has been shown to have antidiabetic and antioxidant properties. The aim of the present study was to develop Ferulic acid nanoparticles and to study its hypoglycemic and wound healing activities. Ferulic acid-poly(lactic-co-glycolic acid) (FA-PLGA) nanoparticles were prepared by nano precipitation method. The prepared FA-PLGA nanoparticles had an average size of 240?nm. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) analysis showed the prepared FA-PLGA nanoparticles were spherical in shape. Drug encapsulation assay showed that 88.49% FA was encapsulated in PLGA. Carbopol 980 was used to formulate FA-PLGA nanoparticles loaded hydrogel. FA-loaded polymeric nanoparticles dispersion (oral administration) and FA-loaded polymeric nanoparticles based hydrogel (topical administration) treated wounds were found to epithelize faster as compared with diabetic wound control group. The hydroxyproline content increased significantly when compared with diabetic wound control. Therefore, the results indicate that FA significantly promotes wound healing in diabetic rats.  相似文献   

11.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号