首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Large-area periodically aligned silicon nanopillar (PASiNP) arrays were fabricated by magnetic sputtering with glancing angle deposition (GLAD) on substrates coated by a monolayer of close-packed polystyrene (PS) nanospheres. The structure of PASiNP arrays could be manipulated by changing the diameter of PS nanospheres. Enhanced light absorptance within a wavelength range from 300 to 1,000 nm was observed as the diameter of nanopillars and porosity of PASiNP arrays increased. Meanwhile, Xe ion irradiation with dose from 1 × 1014 to 50 × 1014 ions/cm2 was employed to modify the surface morphology and top structure of thin films, and the effect of the irradiation on the optical bandgap was discussed.

PACS code

81.15.Cd; 78.66.Jg; 61.80.Jh  相似文献   

2.
The flip chip ultraviolet light-emitting diodes (FC UV-LEDs) with a wavelength of 365 nm are developed with the ex situ reactive plasma deposited (RPD) AlN nucleation layer on patterned sapphire substrate (PSS) by an atmospheric pressure metal-organic chemical vapor deposition (AP MOCVD). The ex situ RPD AlN nucleation layer can significantly reduce dislocation density and thus improve the crystal quality of the GaN epitaxial layers. Utilizing high-resolution X-ray diffraction, the full width at half maximum of the rocking curve shows that the crystalline quality of the epitaxial layer with the (RPD) AlN nucleation layer is better than that with the low-temperature GaN (LT-GaN) nucleation layer. The threading dislocation density (TDD) is estimated by transmission electron microscopy (TEM), which shows the reduction from 6.8 × 107 cm−2 to 2.6 × 107 cm−2. Furthermore, the light output power (LOP) of the LEDs with the RPD AlN nucleation layer has been improved up to 30 % at a forward current of 350 mA compared to that of the LEDs grown on PSS with conventional LT-GaN nucleation layer.  相似文献   

3.
In this report, self-organized GaN nanodots have been grown on Si (111) by droplet epitaxy method, and their density can be controlled from 1.1 × 1010 to 1.1 × 1011 cm-2 by various growth parameters, such as substrate temperatures for Ga droplet formation, the pre-nitridation treatment of Si substrate, the nitridation duration for GaN crystallization, and in situ annealing after GaN formation. Based on the characterization of in situ RHEED, we can observe the surface condition of Si and the formation of GaN nanodots on Si. The surface nitridaiton treatment at 600°C provides a-SiNx layer which makes higher density of GaN nanodots. Crystal GaN nanodots can be observed by the HRTEM. The surface composition of GaN nanodots can be analyzed by SPEM and μ-XPS with a synchrotron x-ray source. We can find GaN nanodots form by droplet epitaxy and then in situ annealing make higher-degree nitridation of GaN nanodots.  相似文献   

4.
In this study, InGaZnO (IGZO) thin film transistors (TFTs) with a dual active layer (DAL) structure are fabricated by inserting a homogeneous embedded conductive layer (HECL) in an amorphous IGZO (a-IGZO) channel with the aim of enhancing the electrical characteristics of conventional bottom-gate-structure TFTs. A highly conductive HECL (carrier concentration at 1.6 × 1013 cm-2, resistivity at 4.6 × 10-3 Ω∙cm, and Hall mobility at 14.6 cm2/Vs at room temperature) is fabricated using photochemical H-doping by irradiating UV light on an a-IGZO film. The electrical properties of the fabricated DAL TFTs are evaluated by varying the HECL length. The results reveal that carrier mobility increased proportionally with the HECL length. Further, a DAL TFT with a 60-μm-long HECL embedded in an 80-μm-long channel exhibits comprehensive and outstanding improvements in its electrical properties: a saturation mobility of 60.2 cm2/Vs, threshold voltage of 2.7 V, and subthreshold slope of 0.25 V/decade against the initial values of 19.9 cm2/Vs, 4.7 V, and 0.45 V/decade, respectively, for a TFT without HECL. This result confirms that the photochemically H-doped HECL significantly improves the electrical properties of DAL IGZO TFTs.  相似文献   

5.
In this work, we presented a surface mechanical attrition treatment (SMAT)-assisted approach to the synthesis of one-dimensional copper oxide nanowires (CuO NWs) for nanodevices applications. The as-prepared CuO NWs have diameter and the length of 50 ~ 200 nm and 5 ~ 20 μm, respectively, with a preferential growth orientation along [1 1¯ 0] direction. Interestingly, nanofield-effect transistor (nanoFET) based on individual CuO NW exhibited typical p-type electrical conduction, with a hole mobility of 0.129 cm2V-1 s-1 and hole concentration of 1.34 × 1018 cm-3, respectively. According to first-principle calculations, such a p-type electrical conduction behavior was related to the oxygen vacancies in CuO NWs. What is more, the CuO NW device was sensitive to visible light illumination with peak sensitivity at 600 nm. The responsitivity, conductive gain, and detectivity are estimated to be 2.0 × 102 A W-1, 3.95 × 102 and 6.38 × 1011 cm Hz1/2 W-1, respectively, which are better than the devices composed of other materials. Further study showed that nanophotodetectors assembled on flexible polyethylene terephthalate (PET) substrate can work under different bending conditions with good reproducibility. The totality of the above results suggests that the present CuO NWs are potential building blocks for assembling high-performance optoelectronic devices.  相似文献   

6.
Studies on interaction of graphene with radiation are important because of nanolithographic processes in graphene-based electronic devices and for space applications. Since the electronic properties of graphene are highly sensitive to the defects and number of layers in graphene sample, it is desirable to develop tools to engineer these two parameters. We report swift heavy ion (SHI) irradiation-induced annealing and purification effects in graphene films, similar to that observed in our studies on fullerenes and carbon nanotubes (CNTs). Raman studies after irradiation with 100-MeV Ag ions (fluences from 3 × 1010 to 1 × 1014 ions/cm2) show that the disorder parameter α, defined by ID/IG ratio, decreases at lower fluences but increases at higher fluences beyond 1 × 1012 ions/cm2. This indicates that SHI induces annealing effects at lower fluences. We also observe that the number of graphene layers is reduced at fluences higher than 1 × 1013 ions/cm2. Using inelastic thermal spike model calculations, we estimate a radius of 2.6 nm for ion track core surrounded by a halo extending up to 11.6 nm. The transient temperature above the melting point in the track core results in damage, whereas lower temperature in the track halo is responsible for annealing. The results suggest that SHI irradiation fluence may be used as one of the tools for defect annealing and manipulation of the number of graphene layers.

PACS

60.80.x; 81.05.ue  相似文献   

7.
Surfaces of InP were bombarded by 1.9 keV Ar+ ions under normal incidence. The total accumulated ion fluence Φ the samples were exposed to was varied from 1 × 1017 cm−2 to 3 × 1018 cm−2, and ion fluxes f of (0.4 − 2) × 1014 cm−2 s−1 were used. The surface morphology resulting from these ion irradiations was examined by atomic force microscopy (AFM). Generally, nanodot structures are formed on the surface; their dimensions (diameter, height and separation), however, were found to depend critically on the specific bombardment conditions. As a function of ion fluence, the mean radius r, height h, and spacing l of the dots can be fitted by power-law dependences: r ∝ Φ0.40, h ∝ Φ0.48, and l ∝ Φ0.19. In terms of ion flux, there appears to exist a distinct threshold: below f ~ (1.3 ± 0.2) × 1014 cm−2 s−1, no ordering of the dots exists and their size is comparatively small; above that value of f, the height and radius of the dots becomes substantially larger (h ~ 40 nm and r ~ 50 nm). This finding possibly indicates that surface diffusion processes could be important. In order to determine possible local compositional changes in these nanostructures induced by ion impact, selected samples were prepared for atom probe tomography (APT). The results indicate that APT can provide analytical information on the composition of individual InP nanodots. By means of 3D APT data, the surface region of such nanodots evolving under ion bombardment could be examined with atomic spatial resolution. At the InP surface, the values of the In/P concentration ratio are distinctly higher over a distance of approximately 1 nm and amount to 1.3 to 1.7.  相似文献   

8.
We report a dramatic and irreversible reduction in the lattice thermal conductivity of bulk crystalline silicon when subjected to intense plastic strain under a pressure of 24 GPa using high-pressure torsion (HPT). Thermal conductivity of the HPT-processed samples were measured using picosecond time domain thermoreflectance. Thermal conductivity measurements show that the HPT-processed samples have a lattice thermal conductivity reduction by a factor of approximately 20 (from intrinsic single crystalline value of 142 Wm−1 K−1 to approximately 7.6 Wm−1 K−1). Thermal conductivity reduction in HPT-processed silicon is attributed to the formation of nanograin boundaries and metastable Si-III/XII phases which act as phonon scattering sites, and because of a large density of lattice defects introduced by HPT processing. Annealing the samples at 873 K increases the thermal conductivity due to the reduction in the density of secondary phases and lattice defects.  相似文献   

9.
We report here a simple and innovative method to prepare large-scale silver nanoparticle films based on the controlled coffee ring effect. It is demonstrated that the films can be used as surface-enhanced Raman scattering probes to detect low-concentration medicines. Silver nanoparticles with the average size about 70 nm were prepared by reduction of silver nitride. In our experiment, the coffee ring effect was controlled by tilting the substrates during the deposition of silver nanoparticle films. Silver nanoparticle films were spontaneously formed on the surface of silicon substrates at the temperatures about 50°C based on the solvent evaporation and the coffee ring effect. The microstructure of the films was investigated using the scanning electron microscope and atomic force microscope. The surface roughness of the films is found as small as 20 nm. Then, the films were exposed to aqueous solutions of medicine at different concentrations. A comparison with a Raman spectra measured with a conventional Raman spectrometer showed that the Raman signal can be detected in the solution with concentrations as low as 1 × 10−5 M, and the enhancement factor achieved by the silver nanoparticle film can at least reach to 1.08 × 104. Our experimental results indicate that this technique is promising in the production of large-scale silver nanoparticle films for the surface-enhanced Raman scattering. These may be utilized in biochemical and trace analytical applications.  相似文献   

10.

Abstract

In this study, we have investigated temporal evolution of silicon surface topography under 500-eV argon ion bombardment for two angles of incidence, namely 70° and 72.5°. For both angles, parallel-mode ripples are observed at low fluences (up to 2 × 1017 ions cm-2) which undergo a transition to faceted structures at a higher fluence of 5 × 1017 ions cm-2. Facet coarsening takes place at further higher fluences. This transition from ripples to faceted structures is attributed to the shadowing effect due to a height difference between peaks and valleys of the ripples. The observed facet coarsening is attributed to a mechanism based on reflection of primary ions from the facets. In addition, the role of sputtering is investigated (for both the angles) by computing the fractional change in sputtering yield and the evolution of surface roughness.

PACS

81.05.Cy, 81.16.Rf, 61.80.Jh, 87.64.Dz  相似文献   

11.
In this paper, we report the effect of Au thickness on the self-assembled Au droplets on GaAs (111)A and (100). The evolution of Au droplets on GaAs (111)A and (100) with the increased Au thickness progress in the Volmer-Weber growth mode results in distinctive 3-D islands. Under an identical growth condition, depending on the thickness of Au deposition, the self-assembled Au droplets show different size and density distributions, while the average height is increased by approximately 420% and the diameter is increased by approximately 830%, indicating a preferential lateral expansion. Au droplets show an opposite evolution trend: the increased size along with the decreased density as a function of the Au thickness. Also, the density shifts on the orders of over two magnitude between 4.23 × 1010 and 1.16 × 108 cm−2 over the thickness range tested. At relatively thinner thicknesses below 4 nm, the self-assembled Au droplets sensitively respond to the thickness variation, evidenced by the sharper slopes of dimensions and density plots. The results are systematically analyzed and discussed in terms of atomic force microscopy (AFM), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), cross-sectional surface line profiles, and Fourier filter transform (FFT) power spectra.  相似文献   

12.
Morphological and optical characteristics of radio frequency-sputtered zinc aluminum oxide over porous silicon (PS) substrates were studied before and after irradiating composite films with 130 MeV of nickel ions at different fluences varying from 1 × 1012 to 3 × 1013 ions/cm2. The effect of irradiation on the composite structure was investigated by scanning electron microscopy, X-ray diffraction (XRD), photoluminescence (PL), and cathodoluminescence spectroscopy. Current–voltage characteristics of ZnO-PS heterojunctions were also measured. As compared to the granular crystallites of zinc oxide layer, Al-doped zinc oxide (ZnO) layer showed a flaky structure. The PL spectrum of the pristine composite structure consists of the emission from the ZnO layer as well as the near-infrared emission from the PS substrate. Due to an increase in the number of deep-level defects, possibly oxygen vacancies after swift ion irradiation, PS-Al-doped ZnO nanocomposites formed with high-porosity PS are shown to demonstrate a broadening in the PL emission band, leading to the white light emission. The broadening effect is found to increase with an increase in the ion fluence and porosity. XRD study revealed the relative resistance of the film against the irradiation, i.e., the irradiation of the structure failed to completely amorphize the structure, suggesting its possible application in optoelectronics and sensing applications under harsh radiation conditions.  相似文献   

13.
The fabrication of self-assembled Au droplets is successfully demonstrated on various GaAs (n11)B, where n is 2, 4, 5, 7, 8, and 9, by the systematic variation of the Au deposition amount (DA) from 2 to 12 nm with subsequent annealing at 550°C. Under an identical growth condition, the self-assembled Au droplets of mini to supersizes are successfully synthesized via the Volmer-Weber growth mode. Depending on the DA, an apparent evolution is clearly observed in terms of the average height (AH), lateral diameter (LD), and average density (AD). For example, compared with the mini Au droplets with a DA of 2 nm, AH of 22.5 nm, and LD of 86.5 nm, the super Au droplets with 12-nm DA show significantly increased AH of 316% and LD of 320%, reaching an AH of 71.1 nm and LD of 276.8 nm on GaAs (211)B. In addition, accompanied with the dimensional expansion, the AD of Au droplets drastically swings on 2 orders of magnitudes from 3.2 × 1010 to 4.2 × 108 cm-2. The results are systematically analyzed with respect to the atomic force microscopy (AFM) and scanning electron microscopy (SEM) images, energy-dispersive X-ray spectrometry (EDS) spectra, cross-sectional line profiles, Fourier filter transform (FFT) power spectra, and root-mean-square (RMS) roughness as well as the droplet dimension and density summary, respectively.  相似文献   

14.
We propose a transparent conductive oxide electrode scheme of gallium oxide nanoparticle mixed with a single-walled carbon nanotube (Ga2O3 NP/SWNT) layer for deep ultraviolet light-emitting diodes using spin and dipping methods. We investigated the electrical, optical and morphological properties of the Ga2O3 NP/SWNT layers by increasing the thickness of SWNTs via multiple dipping processes. Compared with the undoped Ga2O3 films (current level 9.9 × 10-9 A @ 1 V, transmittance 68% @ 280 nm), the current level flowing in the Ga2O3 NP/SWNT increased by approximately 4 × 105 times and the transmittance improved by 9% after 15 times dip-coating (current level 4 × 10-4 A at 1 V; transmittance 77.0% at 280 nm). These improvements result from both native high transparency of Ga2O3 NPs and high conductivity and effective current spreading of SWNTs.  相似文献   

15.
With an appropriate high anneal temperature under H2 atmosphere, GaN quantum dots (QDs) have been fabricated via GaN thermal decomposition in metal organic chemical vapor deposition (MOCVD). Based on the characterization of atomic force microscopy (AFM), the obtained GaN QDs show good size distribution and have a low density of 2.4 × 108 cm-2. X-ray photoelectron spectroscopy (XPS) analysis demonstrates that the GaN QDs were formed without Ga droplets by thermal decomposition of GaN.  相似文献   

16.
Polycrystalline Er-Sc silicates (Er x Sc2-x Si2O7 and Er x Sc2-x SiO5) were fabricated using multilayer nanostructured films of Er2O3/SiO2/Sc2O3 deposited on SiO2/Si substrates by RF sputtering and thermal annealing at high temperature. The films were characterized by synchrotron radiation grazing incidence X-ray diffraction, cross-sectional transmission electron microscopy, energy-dispersive X-ray spectroscopy, and micro-photoluminescence measurements. The Er-Sc silicate phase Er x Sc2-x Si2O7 is the dominant film, and Er and Sc are homogeneously distributed after thermal treatment because of the excess of oxygen from SiO2 interlayers. The Er concentration of 6.7 × 1021 atoms/cm3 was achieved due to the presence of Sc that dilutes the Er concentration and generates concentration quenching. During silicate formation, the erbium diffusion coefficient in the silicate phase is estimated to be 1 × 10-15 cm2/s at 1,250°C. The dominant Er x Sc2 - x Si2O7 layer shows a room-temperature photoluminescence peak at 1,537 nm with the full width at half maximum (FWHM) of 1.6 nm. The peak emission shift compared to that of the Y-Er silicate (where Y and Er have almost the same ionic radii) and the narrow FWHM are due to the small ionic radii of Sc3+ which enhance the crystal field strength affecting the optical properties of Er3+ ions located at the well-defined lattice sites of the Sc silicate. The Er-Sc silicate with narrow FWHM opens a promising way to prepare photonic crystal light-emitting devices.  相似文献   

17.
Surface-enhanced Raman scattering is an effective analytical method that has been intensively applied in the field of identification of organic molecules from Raman spectra at very low concentrations. The Raman signal enhancement that makes this method attractive is usually ascribed to the noble metal nanoparticle (NMNP) arrays which can extremely amplify the electromagnetic field near NMNP surface when localized surface plasmon resonance (LSPR) mode is excited. In this work, we report a simple, facile, and room-temperature method to fabricate large-scale, uniform gold nanoparticle (GNP) arrays on ITO/glass as SERS substrates using a promoted self-assembly deposition technique. The results show that the deposition density of GNPs on ITO/glass surface increases with prolonging deposition time, and nanochain-like aggregates appear for a relatively longer deposition time. It is also shown that these films with relatively higher deposition density have tremendous potential for wideband absorption in the visible range and exhibit two LSPR peaks in the extinction spectra because the electrons simultaneously oscillate along the nanochain at the transverse and the longitudinal directions. The SERS enhancement activity of these GNP arrays was determined using 10-6 M Rhodamine 6G as the Raman probe molecules. A SERS enhancement factor as large as approximately 6.76 × 106 can be obtained at 1,363 cm-1 Raman shift for the highest deposition density film due to the strong plasmon coupling effect between neighboring particles.  相似文献   

18.
Gallium and aluminum co-doped zinc oxide (GAZO) films were produced by magnetron sputtering. The GAZO films were post-annealed in either vacuum or hydrogen microwave plasma. Vacuum- and hydrogen microwave plasma-annealed GAZO films show different surface morphologies and lattice structures. The surface roughness and the spacing between adjacent (002) planes decrease; grain growth occurs for the GAZO films after vacuum annealing. The surface roughness increases and nanocrystals are grown for the GAZO films after hydrogen microwave plasma annealing. Both vacuum and hydrogen microwave plasma annealing can improve the electrical and optical properties of GAZO films. Hydrogen microwave plasma annealing improves more than vacuum annealing does for GAZO films. An electrical resistivity of 4.7 × 10−4 Ω-cm and average optical transmittance in the visible range from 400 to 800 nm of 95% can be obtained for the GAZO films after hydrogen microwave plasma annealing. Hybrid organic photovoltaic (OPV) devices were fabricated on the as-deposited, vacuum-annealed, and hydrogen microwave plasma-annealed GAZO-coated glass substrates. The active layer consisted of blended poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl C61 butyric acid methyl ester (PCBM) in the OPV devices. The power conversion efficiency of the OPV devices is 1.22% for the hydrogen microwave plasma-annealed GAZO films, which is nearly two times higher compared with that for the as-deposited GAZO films.  相似文献   

19.
The structure of electrolytically deposited nanocrystalline alloys of the CoW-CoNiW-NiW systems under low-temperature heating was investigated by means of high-resolution transmission electron microscopy (HRTEM), high-angle annular dark-field scanning transmission electron microscopy (HAADF STEM), and analytical methods such as energy dispersive x-ray spectroscopy (EDS) and electron energy loss spectroscopy (EELS). Structural relaxation and crystallization were investigated at temperatures of 200°C to 300°C. The structural and compositional inhomogeneities were found in the CoW-CoNiW-NiW alloys, while the local changes in composition were found to reach 18 at.%. Nanocrystals in the alloys grew most intensely in the presence of a free surface, and we found their nuclei density to range from 2 × 1023 /m3 to 3 × 1023 /m3. It was determined that the local diffusion coefficient ranged from 0.9 to 1.7 10−18 m2/s, which could be explained by the prevalence of surface diffusion. The data gathered in these investigations can be used to predict the thermal stability of CoW-CoNiW-NiW alloys.  相似文献   

20.
The electrochemical growth of zinc oxide (ZnO) nanostructures on graphene on glass using zinc nitrate hexahydrate was studied. The effects of current densities and temperatures on the morphological, structural, and optical properties of the ZnO structures were studied. Vertically aligned nanorods were obtained at a low temperature of 75°C, and the diameters increased with current density. Growth temperature seems to have a strong effect in generating well-defined hexagonal-shape nanorods with a smooth top edge surface. A film-like structure was observed for high current densities above -1.0 mA/cm2 and temperatures above 80°C due to the coalescence between the neighboring nanorods with large diameter. The nanorods grown at a temperature of 75°C with a low current density of -0.1 mA/cm2 exhibited the highest density of 1.45 × 109 cm-2. X-ray diffraction measurements revealed that the grown ZnO crystallites were highly oriented along the c-axis. The intensity ratio of the ultraviolet (UV) region emission to the visible region emission, IUV/IVIS, showed a decrement with the current densities for all grown samples. The samples grown at the current density below -0.5 mA/cm2 showed high IUV/IVIS values closer to or higher than 1.0, suggesting their fewer structural defects. For all the ZnO/graphene structures, the high transmittance up to 65% was obtained at the light wavelength of 550 nm. Structural and optical properties of the grown ZnO structures seem to be effectively controlled by the current density rather than the growth temperature. ZnO nanorod/graphene hybrid structure on glass is expected to be a promising structure for solar cell which is a conceivable candidate to address the global need for an inexpensive alternative energy source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号