首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Servo scanning 3D micro-EDM based on macro/micro-dual-feed spindle   总被引:2,自引:1,他引:1  
Using the end discharge of micro-rod-shaped electrode to scan layer by layer, micro-electrical discharge machining (EDM) can fabricate complex 3D micro-structures. During the machining process, the discharge state is broken frequently due to the wear of the tool electrode and the relative scanning motion. To keep a favorable discharge gap, the feed spindle of the tool electrode needs the characteristics of high-frequency response and high resolution. In this study, an experimental system with a macro/micro-dual-feed spindle was designed to improve the machining performance of servo scanning 3D micro-EDM (3D SSMEDM), which integrates an ultrasonic linear motor as the macro-drive and a piezoelectric (PZT) actuator as micro-feeding mechanism. Based on LabVIEW and Visual C++ software platform, a real-time control system was developed to control coordinately the dual-feed spindle to drive the tool electrode. The micro-feed motor controls the tool electrode to keep the favorable discharge gap, and the macro-drive motor realizes long working range by a macro/micro-feed conversion. The emphasis is paid on the process control of the 3D SSMEDM based on macro/micro-dual-feed spindle for higher machining accuracy and efficiency. A number of experiments were carried out to study the machining performance. According to the numerical control (NC) code, several typical 3D micro-structures have been machined on the P-doped silicon chips. Our study results show that the machining process is stable and the regular discharge ratio is higher. Based on our fundamental machining experiments, some better-machined effects have been gained as follows. By machining a micro-rectangle cavity (960 μm×660 μm), the machined depth error can be controlled within 2%, the XY dimensional error is within 1%, the surface roughness Ra reaches 0.37 μm, and the material removal rate is about 1.58×104 μm3/s by using a tool electrode of Φ=100 μm in diameter. By machining multi-micro-triangle cavities (side length 700 μm), it is known that the machining repeatability error is <0.7%.  相似文献   

2.
This paper presents an electrochemical micromachining (ECμM) system developed with a machining gap control system. As a preliminary, electrochemical machining (ECM) experiments are carried out. The optimum machining condition of ECM is determined in terms of machining voltage, machining pulse length, amplitude of the electrode for flushing out contamination, and electrolyte concentration. After the preliminary ECM experiments, three-dimensional shape micromachining is carried out under the optimum condition. First, a prismatic electrode with a 200-μm square as the base shape is machined by ECM. Next, three-dimensional shape micromachining is carried out by scanning the prismatic electrode. A three-dimensional shape with sub-millimeter range is successfully machined.  相似文献   

3.
Electrical discharge machining (EDM) process is widely used to process hard materials in the industry. Electrical discharge distribution effects can be achieved by the addition of Al powder in the dielectric. A fine surface roughness value of the workpiece is thus obtained. However, the electrostatic force among fine Al particles is found to agglomerate the Al powders in the dielectric. A surfactant can be adopted to separate the Al powder in the dielectric homogenously. A better surface even the mirror-like quality of the EDMed workpiece is thus desired. In the study, the effect of surfactant and Al powders added in the dielectric on the surface status of the workpiece after EDM is investigated.It is observed the best distribution effect is found when the concentrations of the Al powder and surfactant in the dielectric are 0.1 and 0.25 g/L, respectively. An optimal surface roughness (Ra) value of 0.172 μm is achieved under the following parameter—positive polarity, discharge current 0.3 A, pulse duration time 1.5 μs, open circuit potential 140 V, gap voltage 90 V and surfactant concentration 0.25 g/L.The surface roughness status of the workpiece has been improved up to 60% as compared to that EDMed under pure dielectric with high surface roughness Ra of 0.434 μm.  相似文献   

4.
Development of new-concept desk top size machine tool   总被引:6,自引:0,他引:6  
A desktop multiprocess machinery has been designed that has two concepts: miniaturizing of machine tool and multiprocessing with a same machine tool. The prototype of desktop multiprocess machinery is developed in this study. This is tabletop size machine tool that has five changeable machining heads. Outline of main body and machining head are presented.In order to know the basic accuracy of desktop multiprocess machinery, experimental evaluation is carried out. Machining head setting error, stiffness of multiprocess machinery and straightness of X, Y, Z stage is measured. To study the basic performance of desktop multiprocess machinery, a complex machining experiment is carried out with the developed machine tool. The complex machining consists of three steps: electrode machining by milling, hole shaping by EDM, and hole finishing by ECM. These steps are performed in sequence on the same machine tool. The complex machining is successfully carried out. In order to evaluate the desktop multiprocess machinery from environmental point of view, machining energy, volume of machining liquid, and installation space of desktop multiprocess machinery are measured. The measured values are compared with estimated values with conventional machine tools. The machining energy, the volume of machining liquid, and the installation space of desktop multiprocess machinery are smaller than those of conventional machine tool.  相似文献   

5.
Cupronickel was used as the electrode material to fabricate microstructures on polycrystalline diamond by electrical discharge machining (EDM). The electrodes were shaped into tiny rotary wheels driven by the flow of EDM fluid. Results showed that material removal rate was improved by a factor of five compared to conventional electrode materials. Raman spectroscopy and energy dispersive X-ray spectroscopy indicated that graphitization of diamond and diffusion-based chemical reactions between nickel and diamond dominated the EDM process. Effects of electrode rotation rate and discharge energy on the EDM characteristics were clarified. High form accuracy (∼0.5 μm/1 mm) and low surface roughness (∼0.1 μm Ra) were obtained.  相似文献   

6.
电火花摇动加工微细阵列轴和孔的试验研究   总被引:1,自引:0,他引:1  
针对微细阵列轴和孔的电火花加工,提出了利用数控电火花加工机床摇动功能的摇动加工微细阵列轴和孔的方法.此法是基于电火花反拷贝加工的原理,先用丝电极在薄平板(中间电极)上按要加工的阵列轴和孔间距或数倍间距加工阵列小孔(直径0.1 mm以上),然后用加工的薄平板(中间电极)作电极,电火花摇动加工微细阵列轴(电极),最后用此微细阵列电极加工阵列孔.进行了电火花摇动加工微细阵列电极试验,得到了单电极直径为50 μm、长径比为16的3×3阵列电极,并用此电极在70 μm厚的不锈钢板上加工出单孔直径为70 μm的3×3微细阵列孔.试验结果表明,电火花摇动加工方法可实现微细阵列轴和孔的加工.  相似文献   

7.
The efficiency of material removal using electrochemical machining (ECM) is highly dependent on the initial rim zone modifications of the material to be processed. The influence of the rim zone modifications, such as topography and microstructure, on ECM, is investigated on ferritic–pearlitic 42CrMo4 steel by experiment and simulation. 42CrMo4 steel in two different premachining states—ground and electric discharge machined (EDM)—is subjected to a subsequent surface finishing by ECM in sodium nitrate solution. Before and after ECM, the topography and microstructure are examined using scanning electron microscopy, X-ray diffractometer, and topography analysis methods. The electrochemical properties of the material are determined by potentiodynamic polarization. The efficiency of surface finishing by ECM is quantified by mass spectroscopic analysis (inductively coupled plasma mass spectrometry) of the process electrolyte and related to the rim zone modifications by simulation. The results reveal that the efficiency of material removal during ECM is higher for EDM than for ground 42CrMo4. This is attributed to an increased roughness of EDM 42CrMo4 and to the unfavorable electrochemical properties of the cementite phase in ground 42CrMo4.  相似文献   

8.
The method of electrical discharge machining (EDM), one of the processing methods based on non-traditional manufacturing procedures, is gaining increased popularity, since it does not require cutting tools and allows machining involving hard, brittle, thin and complex geometry.

By using different EDM parameters (current, pulse on-time, pulse off-time, arc voltage), the Ra (μm) roughness value as a result of application of a number of copper electrode-hardened powder metals (cold work tool steel) to a work piece has been investigated, in this study. At the same time, roughness values obtained from the experiments that have been modeled by using the genetic expression programming (GEP) method and a mathematical relationship has been suggested between the GEP model and surface roughness and parameters affecting it. Moreover, EDM has been used by applying copper, copper–tungsten (W–Cu) and graphite electrodes to the same material with experimental parameters designed in accordance with the Taguchi method. Results obtained from this study have been compared among each other and similar studies in the literature.  相似文献   


9.
Micro electrochemical machining (ECM) of tungsten carbide with cobalt binder (WC–Co) was studied using ultrashort pulses. In ECM, the machining characteristics were investigated according to machining conditions such as electrolyte, workpiece potential, and applied voltage pulse. Using a mixture of sulfuric acid and nitric acid, microstructures with a sharp edge and good surface quality were machined on tungsten carbide alloy. The potentials of workpiece electrode and tool electrode were determined by considering the machining rate, machining stability, and surface quality of products. With the negative potential of the workpiece electrode, oxide formation was successfully prevented and shape with good surface quality in the range from Ra 0.069 μm to 0.075 μm were obtained by electrochemical machining. Moreover, the performance of ECM, which includes machining gap, tapering, surface roughness, and machining time, without tool wear was compared with that of electrical discharge machining (EDM). Microstructures of WC–Co with a sharp edge and good surface quality were obtained by electrochemical milling and electrochemical drilling. Micro electrochemical turning was also introduced to fabricate micro shafts.  相似文献   

10.
Film cooling holes are widely used in the aerospace industry, and their fabrication requires high machining speed and accuracy, as well as good surface quality. Tube electrode high-speed electrochemical discharge drilling (TSECDD) is a promising hybrid machining method for the fabrication of film cooling holes in difficult-to-machine superalloys. An electrochemical reaction can occur if a low-conductivity salt solution is used in the drilling. Materials can also be removed at a high speed using electrical discharge machining (EDM). Thus, TSECDD and electrochemical machining (ECM) can be combined into a unique machining process using a low-conductivity salt solution. This machining process achieves both a high machining speed and good surface finish. In this study, the material removal mechanism of TSECDD was studied using a low-conductivity salt solution, and comparisons with high-speed electrical discharge drilling were made. The performance of the process was investigated using salt solutions of various conductivities. The results show that there are different material removal mechanisms in the frontal gap and the lateral gap and that, in the latter, there is a transition from EDM to ECM. Experiments conducted using TSECDD confirm that the use of this process with a low-conductivity salt solution can improve the machining surface and machining efficiency achieved. The results also show that the use of a low-conductivity solution improves the material removal rate, the hole diameter, and the taper angle.  相似文献   

11.
Micro electrochemical machining for complex internal micro features   总被引:2,自引:0,他引:2  
In this paper, the application of micro electrochemical machining (ECM) for the micromachining of internal features is investigated. By controlling pulse conditions and machining time, micro features are machined on the side wall of a micro hole. These methods can easily machine a micro hole with larger internal diameters than the entrance diameter, which is very difficult to do by the conventional processes. A micro disk-shaped electrode with an insulating layer on its surface is also introduced to machine microgrooves inside the hole. This method is similar to the turning lathe process. The purpose of this study was to confirm the various possibilities of making complex internal structures in a micro hole by micro ECM.  相似文献   

12.
In microhole machining of metal, micro electro-discharge machining (MEDM) is an effective method that can easily create a hole with a diameter under 100 μm. Due to the poor surface quality and shape of MEDM, a machining method that compounds MEDM and micro ultrasonic vibration lapping (MUVL) is proposed here to allow the production of high precision microholes with high aspect ratios. In our investigations, first, a circular or stepped circular microtool was made by the MEDM process, and the tool was used to create a microhole on a small piece of titanium plate in the same machining process. Finally, the abrasive particles driven by the same tool were utilized to grind this hole in the MUVL procedure, and a hole with a diameter about 100 μm can be obtained. Owing to the microtool and workpiece not taking apart from the clamping apparatus during different machining steps, the microhole was processed in the co-axial situation, so the precise shape and perfect surface can be obtained easily. For example, the diameter variation between the entrances and exits of the microholes could reach a value of about 5 μm when the workpiece had a thickness of 500 μm, if the circular microtools was used. Meanwhile, the roundness of the microholes clearly improved, regardless of whether circular or stepped tools were used. However, owing to the perfect grinding effect between the microholes and microtools, the stepped circular tools produced high quality surfaces more easily than the circular tools.  相似文献   

13.
Because of its excellent anodic bonding property and surface integrity, borosilicate glass is usually used as the substrate for micro-electro mechanical systems (MEMS). For building the communication interface, micro-holes need to be drilled on this substrate. However, a micro-hole with diameter below 200 μm is difficult to manufacture using traditional machining processes. To solve this problem, a machining method that combines micro electrical-discharge machining (MEDM) and micro ultrasonic vibration machining (MUSM) is proposed herein for producing precise micro-holes with high aspect ratios in borosilicate glass. In the investigations described in this paper, a circular micro-tool was produced using the MEDM process. This tool was then used to drill a hole in glass using the MUSM process. The experiments showed that using appropriate machining parameters; the diameter variations between the entrances and exits (DVEE) could reach a value of about 2 μm in micro-holes with diameters of about 150 μm and depths of 500 μm. DVEE could be improved if an appropriate slurry concentration; ultrasonic amplitude or rotational speed was utilized. In the roundness investigations, the machining tool rotation speed had a close relationship to the degree of micro-hole roundness. Micro-holes with a roundness value of about 2 μm (the max. radius minus the min. radius) could be obtained if the appropriate rotational speed was employed.  相似文献   

14.
The effect of various parameters on the surface roughness of an aluminium alloy burnished with a spherical surfaced polycrystalline diamond tool are studied experimentally with a theoretical analysis. Problems in selecting the optimum burnishing parameters and some burnishing mechanisms are discussed. With suitable parameters employed, the new no-chip finishing process developed can eliminate or reduce the cutting marks left on the workpiece surface by diamond cutting tools, with its surface roughness reduced to Ra=0.026 μm from the original 0.5 μm.  相似文献   

15.
Electrical discharge machining (EDM) is used as a precision machining method for the electrically conductive hard materials with a soft electrode material. But recently we succeeded to machine on insulating material by EDM. The technology is named as an assisting electrode method. The EDMed surface is covered with the electrical conductive layer during discharge. The layer holds the electrical conductivity during discharge. For micro-EDM, the wear of tool electrode becomes lager ratio than the normal machining. So the micro-machining is extremely difficult to get the precision sample.

In this paper to obtain a fine and precise ceramics sample, some trials were carried out considering the EDM conditions, tool electrodes material and assisting electrode materials. Insulating Si3N4 ceramics were used for workpiece. The machining properties were estimated by the removal rate and tool wear ratio. To confirm the change of micro-machining process, the discharge waveforms were observed. The micro-machining of the Ø0.05 mm hole could be machined with the commercial sinking electrical discharge machine.  相似文献   


16.
A new method for monitoring micro-electric discharge machining processes   总被引:2,自引:2,他引:0  
Micro-electric discharge machining (μ-EDM) is a very complex phenomenon in terms of its material removal characteristics since it is affected by many complications such as adhesion, short-circuiting and cavitations. This paper presents a new method for monitoring μ-EDM processes by counting discharge pulses and it presents a fundamental study of a prognosis approach for calculating the total energy of discharge pulses. For different machining types (shape-up and flat-head) and machining conditions (mandrel rotation and tool electrode vibration), the results obtained using this new monitoring method with the prognosis approach show good agreement between the discharge pulses number and the total energy of discharge pulses to the material removal and tool electrode wear characteristic in μ-EDM processes. On applying tool electrode vibration, the machining time becomes shorter, because it removes adhesion. The effect of tool electrode vibration in order to remove adhesion can be monitored with good results. In order to achieve high accuracy, the tool wear compensation factor has been successfully calculated, since the amount of tool electrode wear is different in each machining type and condition. Consequently, a deeper understanding of the μ-EDM process has been achieved.  相似文献   

17.
精密模具的大面积镜面加工技术   总被引:1,自引:1,他引:0  
介绍了精密模具电火花镜面加工的意义及国内外电火花镜面加工的研究概况。在讨论电火花镜面加工机理的基础上 ,对镜面加工的工艺参数、加工设备、影响因素等问题进行了分析 ,并对精密模具电火花镜面加工的主要关键技术进行了讨论 ,包括镜面加工脉冲电源的设计、镜面加工电火花控制系统、电极和工件材料的影响因素、混粉工作液加工工艺等  相似文献   

18.
Ultrasonic vibration was applied to dielectric fluid by a probe-type vibrator to assist micro electrical discharge machining of deep micro-holes in ceramic materials. Changes of machined hole depth, hole geometry, surface topography, machining stability and tool material deposition under various machining conditions were investigated. Results show that ultrasonic vibration not only induces stirring effect, but also causes cloud cavitation effect which is helpful for removing debris and preventing tool material deposition on machined surface. The machining characteristics are strongly affected by the vibration amplitude, and the best machining performance is obtained when carbon nanofibers are added into the vibrated dielectric fluid. As test pieces, micro-holes having 10 μm level diameters and high aspect ratios (>20) were successfully fabricated on reaction-bonded silicon carbide in a few minutes. The hybrid EDM process combining ultrasonic cavitation and carbon nanofiber addition is demonstrated to be useful for fabricating microstructures on hard brittle ceramic materials.  相似文献   

19.
An attempt was made to increase the machining speed of a new electrical discharge machining system for fabricating narrow, deep holes in metal. The method employs a wire encased in a dielectric jacket as the tool electrode, in contrast with the conventional pipe electrode. The role of the dielectric jacket is to completely suppress unnecessary secondary discharges occurring between the sidewalls of the wire and the fabricated hole. In the present study, the effectiveness of the combination of conductive working fluid and a capacitor connected to the work piece and the tool electrode was examined. Although electrode wear was severe, machining speed with this combination (saline water at 150–250 μS/cm and capacitance at 8 μF) was twice as fast compared with fabricating a hole ( 0.8–0.9 mm) without a capacitor and saline water in a 20-mm thick carbon steel block. The mechanisms involved are discussed based on electrical circuit theory and electrochemical corrosion.  相似文献   

20.
This paper compares the effects of high- and low-frequency forced axial vibration of the electrode, rotation of the electrode, and combinations of these methods in respect of material removal rate (MRR), tool wear rate and surface roughness in die sinking electro-discharge machining (EDM) with a flat electrode (planing mode).

The results of the combined states of rotation and vibration at high and low frequency (vibro-rotary EDM) are compared in order to establish which combinations are most appropriate to different machining regimes (finishing, semi-finishing and roughing). It is found that the combination of high-frequency vibration and rotation of the electrode is effective in attaining a high MRR at a specified surface roughness (Ra). This case is modelled by stepwise linear regression. The significant parameters are found by analysis of variance (ANOVA) and the optimum machining parameter settings are obtained using overlay contour plots. The advantages of vibration and rotation are seen to combine in this new process when employed for die sinking EDM with a flat electrode.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号