首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Composite powders were hot-pressed to determine the phase relations in the Si3N4-SiO2-Y2O3 pseudoternary system. Four quaternary compounds, Si3Y2O3N4, YSiO2N, Y10Si7O23N4, and Y4Si2O7N2, were identified. Studies of polyphase and single-phase materials in this system showed that these 4 compounds are unstable under oxidizing conditions. Materials within the Si3N4-Si2N2O-Y2Si2O7 compatibility triangle precluded the unstable compounds, and are extremely resistant to oxidation.  相似文献   

2.
The microstructures and mechanical properties of continuous porous SiC–Si3N4 composites fabricated by multi-pass extrusion were investigated, depending on the amount of Si powder added. Si powder with different weight percentages (0%, 5%, 10%, 15%, 20%) was added to SiC powder to make raw mixture powders, with 6 wt% Y2O3–2 wt% Al2O3 as sintering additives, carbon (10–15 μm) as a pore-forming agent, ethylene vinyl acetate as a binder, and stearic acid (CH3(CH2)16COOH) as a lubricant. In the continuous porous SiC–Si3N4 composites, Si3N4 whiskers like the hairs of nostrils were frequently observed on the wall of the pores. In this study, the morphology of Si3N4 whiskers was investigated with the nitridation condition and silicon addition content. In composites containing an addition of 10 wt% Si, a large number of Si3N4 whiskers were found at the continuous pore regions. In the sample to which 15 wt% Si powder was added, a maximum value of about 101 MPa bending strength and 57.5% relative density were obtained.  相似文献   

3.
The effects of fabrication variables on the high-temperature strength of hot-pressed Si3N4 containing 5 wt% Y2O3 were studied. Materials containing a crystalline grain-boundary phase, formed as a consequence of a high-temperature presintering heat treatment and identified as Si3N4·Y2O3, had high-temperature strengths significantly superior to those observed for materials containing a glass phase.  相似文献   

4.
The melting behaviors of selected compositions in the Si3N4-AlN-Y2O3 system were determined under 1 MPa of nitrogen. The phase diagrams of the ternary and their binary systems are presented. The lowest melting composition of the ternary system contains 15 mol % Si3N4, 25 mol % AIN, and 60 mol % Y2O3 and has a melting temperature of 1650°C. The binary eutectic compositions and temperatures are 15 mol % Si3N4 and 85 mol % Y2O3 at 1720°C, and 20 mol % AIN and 80 mol% Y2O3 at 1730°C.  相似文献   

5.
Porous Si3N4 ceramics were synthesized by pressureless sintering of green compacts prepared using slip casting of slurries containing Si3N4, 5 wt% Y2O3+2 wt% Al2O3, and 0–60% organic whiskers composed of phenol–formaldehyde resin with solids loading up to 60 wt%. Rheological properties of slurries were optimized to achieve a high degree of dispersion with a high solid-volume fraction. Samples were heated at 800°C in air and sintered at 1850°C in a N2 atmosphere. Porosities ranging from 0% to 45% were obtained by the whisker contents (corresponding to 0–60 vol% whisker). Samples exhibited a uniform pore distribution. Their rod-shaped pore morphology originated from burnout of whiskers, and an extremely dense Si3N4 matrix.  相似文献   

6.
Subsolidus phase relations were established in the system Si3N4-SiO2-Y2O3. Four ternary compounds were confirmed, with compositions of Y4Si2O7N2, Y2Si3O3N4, YSiO2N, and Y10(SiO4)6N2. The eutectic in the triangle Si3N4-Y2Si2O7-Y10(SiO4)6N2 melts at 1500°C and that in the triangle Si2N2O-SiO2-Y2Si2O7 at 1550°C. The eutectic temperature of the Si3N4-Y2Si2O7 join was ∼ 1520°C.  相似文献   

7.
The subsolidus phase relationships in the system Si,Al,Y/N,O were determined. Thirty-nine compatibility tetrahedra were established in the region Si3N4─AIN─Al2O3─Y2O3. The subsolidus phase relationships in the region Si3N4─AIN─YN─Y2O3 have also been studied. Only one compound, 2YN:Si3N4, was confirmed in the binary system Si3N4─YN. The solubility limits of the α'─SiAION on the Si3N4─YN:3AIN join were determined to range from m = 1.3 to m = 2.4 in the formula Y m /3Si12- m Al m N16. No quinary compound was found. Seven compatibility tetrahedra were established in the region Si3N4─AIN─YN─Y2O3.  相似文献   

8.
The effects of ZrO2 and Y2O3 on the densification of hotpressed Si3N4-Zr(Y)O2 composites have been studied. High density could not be obtained by the addition of pure or 3-mol%-Y2O3-doped ZrO2 in this composite; however, nearly full density (>97%) could be obtained in Si3N4 using 6- and 8-mol%-Y2O3-doped ZrO2. It is concluded that Y2O3 diffusing out from the added Zr(Y)O2 promoted the densification and that ZrO2 also had some role in the formation of an oxynitride glass.  相似文献   

9.
Sintering kinetics of the system Si3N4-Y2O3-Al2O3 were determined from measurements of the linear shrinkage of pressed disks sintered isothermally at 1500° to 1700°C. Amorphous and crystalline Si3N4 were studied with additions of 4 to 17 wt% Y2O3 and 4 wt% A12O3. Sintering occurs by a liquid-phase mechanism in which the kinetics exhibit the three stages predicted by Kingery's model. However, the rates during the second stage of the process are higher for all compositions than predicted by the model. X-ray data show the presence of several transient phases which, with sufficient heating, disappear leaving mixtures of β ' -Si3N4 and glass or β '-Si3N4, α '-Si3N4, and glass. The compositions and amounts of the residual glassy phases are estimated.  相似文献   

10.
The compressive creep behavior and oxidation resistance of an Si3N4/Y2Si2O7 material (0.85Si3N4+0.10SiO2+0.05Y2O3) were determined at 1400°C. Creep re sistance was superior to that of other Si3N4 materials and was significantly in creased by a preoxidation treatment (1600°C /120 h). An apparent parabolic rate constant of 4.2 × 10−11 kg2·m-4·s−1 indicates excellent oxidation resistance.  相似文献   

11.
Formation of N-phase in the system Mg,Si,Al/N,O was studied. Its composition was confirmed to be MgAl2Si4O6N4 (2Si2N2OMgAl2O4). Subsolidus phase relationships in the MgO–Si2N2O-Al2O3 system were determined. The results are discussed by comparing with two similar systems, CaO-and Y2O3–Si2N2O–Al2O3.  相似文献   

12.
Detailed microstructural analysis of a 10 mol% Y2O3 fluxed hot-pressed silicon nitride reveals that, in addition to the yttrium-silicon oxynitride phase located at the multiple Si3N4 grain junctions, there is a thin boundary phase 10 to 80 Å wide separating the silicon nitride and the oxynitride grains. Also, X-ray microanalysis from regions as small as 200 Å across demonstrates that the yttrium-silicon oxynitride, Y2Si(Si2O3N4), phase can accommodate appreciable quantities of Ti, W, Fe, Ni, Co, Ca, Mg, Al, and Zn in solid solution. This finding, together with observations of highly prismatic Si3N4 grains enveloped by Y2Si(Si2O3N4), suggests that densification occurred by a liquid-phase "solution-reprecipitation" process.  相似文献   

13.
Dense, ZrO2-dispersed Si3N4 composites without additives were fabricated at 180 MPa and ∼1850° to 1900°C for l h by hot isostatic pressing using a glass-encapsulation method; the densities reached >96% of theoretical. The dispersion of 20 wt% of 2.5YZrO2 (2.5 mol% Y2O3) in Si3N4 was advantageous to increase the room-temperature fracture toughness (∼7.5 MPa˙m1/2) without degradation of hardness (∼15 GPa) because of the high retention of tetragonal ZrO2. The dependence of fracture toughness of Si3N4–2.5YZrO2 on ZrO2 content can be related to the formation of zirconium oxynitride because of the reaction between ZrO2 and Si3N4 matrix in hot isostatic pressing.  相似文献   

14.
This study shows that the amount ofAl2O3 needed to form high density Si3N4-15Y2-O3 samples can be reduced by using high surface area Si3N4 powder and high N2 overpressure (high sintering temperatures) during the sintering process. The reduction in AI2O3 content results in improved oxidation resistance of the sintered samples.  相似文献   

15.
The subsolidus phase diagram of the quasiternary system Si3N4-AlN-Y2O3 was established. In this system α-Si3N4 forms a solid solution with 0.1Y2O3: 0.9 AIN. The solubility limits are represented by Y0.33Si10.5Al1.5O0.5N15.5 and Y0.67Si9A13ON15. At 1700°C an equilibrium exists between β-Si3N4 and this solid solution.  相似文献   

16.
The phase relations in the Si3N4-rich portion of the Si3N4–AlN–Y2O3 rystem were investigated using hot-pressed bodies. The one-phase fields of β3 and α, the twophase fields of β+α, β+M (M=melilite), and α+M, and the three-phase fields of β+α+M were observed in the Si3N4-rich portion. The α- and β-sialons are not two different compounds but an allotropic transformation phase of the Si–Al–O–N system, and an α solid solution expands and stabilizes with increasing Y2O3 content. Therefore, the formulas of the two sialons should be the same.  相似文献   

17.
Hot isostatic pressing was studied for densification of reaction-bonded Si3N4 containing various levels of Y2O3. Near-theoretical density was achieved for com positions containing 3 to 7 wt% Y2O3. An Si3N4-5 wt% Y2O3 composition had a 4-point flexural strength at 1375°C of 628 MPa and survived 117 h of stress rupture testing at 1400°C and 345 MPa .  相似文献   

18.
The oxygen content of silicon nitride with 1 mol% Y2O3—Nd2O3 additive was measured after firing to determine the compositional change during gas-pressure sintering. Oxygen content decreases from 2.5 to 0.94 wt% during firing for 4 h at 1900°C and 10-MPa pressure in N2. This decrease in oxygen results from the release of SiO gas generated by a thermaldecomposition reaction between Si3N4 and SiO2. The resultant sintered silicon nitride material contains less than 1 wt% oxygen.  相似文献   

19.
Si3 N4 test bars containing additions of BN, B4C, and C, were hot isostatically pressed in Ta cladding at 1900° and 2050°C to 98.9% to 99.5% theoretical density. Room-temperature strength data on specimens containing 2 wt% BN and 0.5 wt% C were comparable to data obtained for Si3 N4 sintered with Y2O3, Y2O3 and Al2O3, or ZrO2. The 1370°C strengths were less than those obtained for additions of Y2O3 or ZrO2 but greater than those obtained from a combination of Y2O3 and Al2O3. Scanning electron microscope fractography indicated that, as with other types of Si3N4, roomtemperature strength was controlled by processing flaws. The decrease in strength at 1370°C was typical of Si3N4 having an amorphous grainboundary phase. The primary advantage of non-oxide additions appears to be in facilitating specimen removal from the Ta cladding.  相似文献   

20.
The rates of densification and phase transformation undergone by α-Si3N4 during hot-pressing in the presence of Y2O3, Y2O3−2SiO2, and Li20−2Si02 as additives were studied. Although these systems behave less simply than MgO-doped Si3N4, the data can be interpreted during the early stages of hot-pressing as resulting from a solution-diffusion-reprecipitation mechanism, where the diffusion step is rate controlling and where the reprecipitation step invariably results in the formation of the β-Si3N4 phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号