共查询到20条相似文献,搜索用时 15 毫秒
1.
The polyvinylidene fluoride (PVDF) under study is a semi-crystalline polymer that exhibits sensitivity of mechanical properties to both strain rate and temperature. Furthermore, this material is subjected to a significant cavitation during deformation. A comprehensive experimental database was built in order to analyze the fracture behaviour in the ductile to brittle transition domain. Tensile tests were carried out on smooth and notched specimens at temperatures ranging from −50 °C to 20 °C. The results were used to determine temperature-dependent material parameters by using the mechanics of porous media. The obtained set of parameters was validated on two kinds of pre-cracked specimens, by using the local approach of fracture mechanics. With the help of a finite element code, both global and local approaches of fracture mechanics were shown to complement one another: whereas classical formulae of J-integral fail to characterize crack initiation for this PVDF, the present methodology allowed the plot of J1C values with respect to temperature. 相似文献
2.
Yun-Jae Kim 《Engineering Fracture Mechanics》2004,71(2):173-191
This paper presents experimental validation of two reference stress based methods for circumferential cracked pipes. One is the R6 method where the reference stress is defined by the plastic limit load. The other is the enhanced reference stress method, recently proposed by the authors, where the reference stress is defined by the optimised reference load. Using 38 published pipe test data, the predicted maximum instability loads according to both methods are compared with the experimental ones for pipes with circumferential through-thickness cracks and with part circumferential surface cracks. It is found that the R6 method gives conservative estimates of the maximum loads for all cases. Ratios of the experimental maximum load to the predicted load range from 0.54 to 0.98. On the other hand, the proposed method gives overall closer maximum loads than R6, compared to the experimental data. However, for part through-thickness surface cracks, the estimated loads were slightly non-conservative for four cases, and possible reasons are fully discussed. 相似文献
3.
Simplified equations for determining double‐K fracture parameters of concrete for 3‐point bending test 下载免费PDF全文
R.K. Choubey S. Kumar 《Fatigue & Fracture of Engineering Materials & Structures》2018,41(7):1615-1626
The paper presents simplified polynomial equations for determining the double‐K fracture parameters of concrete for 3‐point bending beams with variable strengths and material properties of concrete. The derived equations avoid complexities involved in computations of fracture parameters using existing analytical methods. The input data required for systematic computation in the study for deriving the nondimensional fracture parameters are obtained using a fictitious crack model. It is inferred that for a relative size of initial crack length, critical load and corresponding crack opening displacement maintain a linear relationship in their nondimensional forms. The value of critical mouth opening displacement can also be determined for known value of peak load using the derived nondimensional equation, thus avoiding the measurement of the crack mouth opening displacement in the experiment. Further, the derived polynomial equations predict the double‐K fracture parameters of concrete with negligible error as compared to those obtained based on experimental results. 相似文献
4.
The crack propagation direction may affect weld metal fracture behavior. This fracture behavior has been investigated using two sets of single edge notched bend (SENB) specimens; one with a crack propagating in the welding direction (B×2B) and the other with a crack propagating from the top in the root direction (B×B) of a welded joint. Two different weld metals were used, one with low and one with high toughness values. For Weld Metal A, two specimen types have been used (B×B and B×2B) both with deep cracks. The weld metal A (with high toughness values) has reasonably uniform properties between weld root and cap. The resulting J-R curves show little effect of the specimen type, are ductile to the extent that the toughness exceeds the maximum Jmax, value allowed by validity limits and testing is in the large –scale yielding regime. In the case of weld metal B (with low toughness values) with two specimen types (B×B and B×2B) the B×B specimen has shallow cracks while the B×2B specimen has deep cracks. Both resulting J-R curves show unstable behavior despite the fact that the types of specimen and their constraints are different. The analysis has shown that crack propagation direction is most influential for a weldment with low toughness in the small scale yielding regime, whereas its influence diminishes due to ductile tearing during stable crack growth and large scale yielding. The results have shown that these effects are different in both the crack initiation phase and during stable crack growth, indicating a dependence on weld metal toughness and the microstructure of the weld metal. It can be concluded that, if resistance curves during stable crack growth do not show differences in both notch orientations, the fracture toughness values of the whole weld metal can be treated as uniform. 相似文献
5.
The present work proposes a method for elastic-plastic fracture mechanics analysis of the circumferential through-wall crack in weldment joining elbows and attached straight pipes, subject to in-plane bending. Heterogeneous nature of weldment is not explicitly considered and thus, the proposed method assumes cracks in homogeneous materials. Based on small strain finite element limit analyses using elastic-perfectly plastic materials, closed-form limit loads for circumferential through-wall cracks between elbows and straight pipes under bending are given. Then applicability of the reference stress-based method to approximately estimate J and crack opening displacement (COD) is evaluated. It was found that the limit moments for circumferential cracks between elbows and attached straight pipes can be much lower than those for cracks in straight pipes, particularly for a crack length of less than 30% of the circumference; this result is of great interest in practical cases. This result implies that, if one assumes that the crack locates in the straight pipe, limit moments could be overestimated significantly, and accordingly, reference stress-based J and COD could be significantly overestimated. For the leak-before-break analysis, accurate J and COD estimation equations based on the reference stress approach are proposed. 相似文献
6.
High strength materials have gained prominence in the fields of aero-structures, space missiles, ship-building, pressure vessels
etc. However, high strength materials are often characterised by low values of crack resistance or fracture toughness. Knowledge
of stress intensity factor (SIF) is essential to predict their fracture toughness. SIF values can be obtained both theoretically
and experimentally. Theoretical methods include analytical techniques as well as the finite element method (FEM). The former
is used for simpler geometries and the latter for complicated geometries of engineering structures. The SIF as a function
of crack size in an aluminium alloy 2024-T3 (Al-4·5% Cu, 1·5% Mg, 0·6% Mn) sheet was determined by a computer method. These values were obtained directly from the stresses
as well as indirectly from strain energy release rateG andJ integral. The results agree well with the normalised values obtained from an ASTM formula. The size and shape of the plastic
zone at the crack tip have been determined as a function of nominal stress for a fixed crack length. The plastic zone has
the form of two ellipsoids with their maximum spreads oriented around 69° to the crack axis. 相似文献
7.
Y.-J. KIM N.-S. HUH Y.-J. KIM 《Fatigue & Fracture of Engineering Materials & Structures》2003,26(3):229-244
This paper compares engineering estimation schemes of C* and creep crack opening displacement (COD) for cylinders with circumferential and axial through‐thickness cracks at elevated temperatures with detailed 3D elastic‐creep finite element results. Engineering estimation schemes include the GE/EPRI method; the reference stress (RS) method where the reference stress is defined based on the plastic limit load; and the enhanced reference stress (ERS) method where the reference stress is defined based on the optimised reference load, recently proposed by the authors. Systematic investigations are made not only on the effect of creep‐deformation behaviour on C* and creep COD, but also on effects of the crack location, the cylinder geometry, the crack length and the loading mode. Comparison of the finite element (FE) results with engineering estimations provides that for idealised power law creep, estimated C* and COD rate results from the GE/EPRI method agree best with FE results, suggesting that published plastic influence functions for plastic J and COD for through‐thickness cracked cylinders are reliable. For general creep‐deformation laws where either primary or tertiary creep is important and thus the GE/EPRI method is hard to apply, on the other hand, the ERS method provides more accurate and robust estimations for C* and COD rate than the reference stress method. As these two methods differ only in the definition of the reference stress, the ERS method maintains benefits of the reference stress method in terms of simplicity, but improves accuracy of the estimated J, C* and COD results. 相似文献
8.
Dieter SIEGELE 《材料科学前沿(英文版)》2011,5(2):224
Numerical methods are nowadays a useful tool for the calculation of distortion and residual stresses as a result from the welding process. Modern finite element codes not only allow for calculation of deformations and stresses due to the welding process but also take into account the change of microstructure due to different heating and cooling rates. As an extension to the pure welding simulation, the field of welding mechanics combines the mechanics and the material behaviour from the welding process with the assessment of service behaviour of welded components. In the paper, new results of experimental and numerical work in the field of welding mechanics are described. Through examples from automotive, nuclear and pipe-line applications it is demonstrated that an equilibrated treatment and a close interaction of “process”, “properties” and “defects” are necessary to come up with an advanced fitness-for-service assessment of welded components. 相似文献
9.
Shicheng Zhang 《International Journal of Fracture》2001,112(3):247-274
Notch stress, stress intensity factors and J-integral at a spot weld are generally expressed by structural stresses around the spot weld. The determination of these parameters are then simplified as determining the structural stresses that can be calculated by a spoke pattern in finite element analysis. Approximate stress formulas for structural stress, notch stress and equivalent stress intensity factor are given for common spot-welded specimens. With the aid of the formulas, test data in terms of the original load can be easily transformed into the data in terms of the structural stress, notch stress or equivalent stress intensity factor at the spot weld. The formulas also facilitate the transfer of test data across different specimens. A measuring method is given for lap joints. The strain gauge technique developed for the tensile-shear specimen shows that all the structural stress, notch stress, stress intensity factors and J-integral at the spot weld can be determined by two strain gauges attached only to the outer surface of one sheet. The results presented here should be helpful for the analysis and testing of spot welds and for developing measuring methods for spot welds. 相似文献
10.
F. Minami M. Ohata T. Handa M. Kurihara Y. Yamashita Y. Hagihara 《Engineering Fracture Mechanics》2006,73(14):1996-2020
This paper presents a procedure for transferring the CTOD fracture toughness obtained from laboratory specimens to an equivalent CTOD for structural components, taking constraint loss into account. The Weibull stress criterion is applied to correct the CTOD for constraint loss, which leads to an equivalent CTOD ratio, β, defined as β = δ/δWP, where δ and δWP are CTODs of the standard fracture toughness specimen and the structural component, respectively, at the same level of the Weibull stress. The CTOD ratio β is intended to apply to the fracture assessment of ferritic steel components to stress levels beyond small-scale yielding. Nomographs are given to determine the β-value as a function of the crack type and size in the component, the yield-to-tensile ratio of the material and the Weibull shape parameter m. Examples of the fracture assessment using β are shown within the context of a failure assessment diagram (FAD). An excessive conservatism observed in the conventional procedure is reduced reasonably by applying the equivalent CTOD ratio, β. 相似文献
11.
Investigation of fracture resistance of natural rubber/clay nanocomposites by J-testing 总被引:1,自引:0,他引:1
The present work is aimed at studying the fracture behavior of a series of vulcanized natural rubber/organoclay samples obtained by melt blending. A fracture mechanics approach based on J-testing was adopted to evaluate the material resistance to crack initiation and propagation from a J-resistance curve as experimentally obtained by a single specimen procedure. The basis of the method and the experimental procedure adopted are described. Further, the effect of the organoclay content within the elastomeric matrix on the fracture properties is analyzed. It is found that the capability of the organoclay to improve fracture resistance is rate dependent indicating the viscoelastic character of the fracture process in such filled systems. 相似文献
12.
Yun-Jae Kim Jin-Su Kim Young-Ze Lee Young-Jin Kim 《International Journal of Fracture》2002,116(4):347-375
This paper provides engineering estimates of non-linear fracture mechanics parameters for pipes with part circumferential inner surface cracks, subject to internal pressure and global bending. Solutions are given in the form of two different approaches, the GE/EPRI approach and the reference stress approach. For the GE/EPRI approach, the plastic influence functions for fully plastic J solutions are tabulated based on extensive 3-D FE calculations using deformation plasticity, covering a wide range of pipe and crack geometries. The developed GE/EPRI-type fully plastic J estimation equations are then re-formulated using the concept of the reference stress approach for wider applications. The proposed reference stress based estimates are validated against detailed 3-D elastic-plastic and elastic-creep FE results. For a total of 26 cases considered in this paper, agreement between the proposed reference stress based J and C
* estimates and the FE results is excellent. An important aspect of the proposed estimates is that they not only are simple and accurate but also can be used to estimate J and C
* at an arbitrary point along the crack front. 相似文献
13.
Scratch test model for the determination of fracture toughness 总被引:1,自引:0,他引:1
We revisit the scratch test within the framework of linear elastic fracture mechanics. In the analysis, we employ an Airy stress function approach to determine stresses and displacement in the vicinity of the scratch-blade–material interface, which serve as input for the evaluation of the energy release rate by means of the J-Integral. In contrast to previous models, the energy release rate thus found scales with the sum of the applied forces squared. This entails a linear relation between the applied forces and , where w is the scratch width and d the scratch depth. This analytical scaling is validated using experimental scratch data on cement paste and sandstone, which shows that the proposed approach provides a convenient way to determine the fracture toughness from scratch tests carried out with different scratch widths and depths. 相似文献
14.
Based on the reference stress approach, two sets of the crack opening displacement (COD) estimation equations are proposed for a complex cracked pipe. One set of equations can be used for the case when full stress-strain data are known, and the other for the case when only yield and tensile strengths are available. To define the reference stress, a simple plastic limit analysis for the complex cracked pipe subject to combined bending and tension is performed, considering the crack closure effect in the compressive-stressed region. Comparison with ten published test data and the results from the existing method shows that the present method not only reduces non-conservatism associated with the existing method, but also provides consistent and overall satisfactory results. These results provide sufficient confidence in the use of the present method to estimate the COD (and thus the leak rate) for the Leak-before-Break (LBB) analysis of complex cracked pipes. Finally, the J-estimation equations are also provided for complex cracked pipes, for the LBB analysis of complex cracked pipes. 相似文献
15.
This paper presents a direct traction boundary integral equation method (DTBIEM) for two-dimensional crack problems of materials. The traction boundary integral equation was collocated on both the external boundary and either side of the crack surfaces. The displacements and tractions were used as unknowns on the external boundary, while the relative crack opening displacement (RCOD) was chosen as unknowns on either side of crack surfaces to keep the single-domain merit. Only one side of the crack surfaces was concerned and needed to be discretized, thus the proposed method resulted in a smaller system of algebraic equations compared with the dual boundary element method (DBEM). A new set of crack-tip shape functions was constructed to represent the strain field singularity exactly, and the SIFs were evaluated by the extrapolation of the RCOD. Numerical examples for both straight and curved cracks are given to validate the accuracy and efficiency of the presented method. 相似文献
16.
R. Brighenti F. Artoni 《Fatigue & Fracture of Engineering Materials & Structures》2016,39(12):1445-1460
The fluid containment in vessels, pipes, containers, etc. often requires the use of seals in order to assure the absence of leak in the junction zones. Sealing mechanism is typically achieved through the use of elastomeric elements that form contact with the surrounding rigid materials the containers are made of. A proper design and safety evaluation of the containment capacity of seals requires the careful evaluation of the contact pressure distribution between the soft (seal) and hard (vessel) elements. In the present paper such a problem is considered and solved through contact stress and strain evaluation based on fracture mechanics; numerical and experimental analyses on elastomeric elements are considered in order to verify the proposed modeling procedure. It is shown that the desired safety level against leakage can be ensured on the basis of the classical fracture mechanics parameters when the seal crack tip exists, or through contact strain assessment when the stress singularity vanishes. Such results can be useful in the design of seal shapes and for estimating the pressure to be applied to the sealed bodies in order to guarantee no leaks. Finally, some final relevant conclusions on the present study on leak containment are drawn. 相似文献
17.
P. H. Wen M. H. Aliabadi D. P. Rooke 《Engineering Analysis with Boundary Elements》1995,16(4):351-362
Indirect boundary element methods (fictitious load and displacement discontinuity) have been developed for the analysis of three-dimensional elastostatic and elastodynamic fracture mechanics problems. A set of boundary integral equations for fictitious loads and displacement discontinuities have been derived. The stress intensity factors were obtained by the stress equivalent method for static loading. For dynamic loading the problem was studied in Laplace transform space where the numerical calculation procedure, for the stress intensity factor KI(p), is the same: as that for the static problem. The Durbin inversion method for Laplace transforms was used to obtain the stress intensity factors in the time domain KI(t). Results of this analysis are presented for a square bar, with either a rectangular or a circular crack, under static and dynamic loads. 相似文献
18.
Transferability of the two‐parameter fracture criterion for 2219 aluminium alloy cracked configurations 下载免费PDF全文
M. J. Mahtabi A. Sanford N. Shamsaei J. C. Newman Jr. 《Fatigue & Fracture of Engineering Materials & Structures》2016,39(3):335-345
Two‐dimensional elastic–plastic finite‐element fracture simulations with the critical crack‐tip‐opening‐angle fracture criterion were used to evaluate the two‐parameter fracture criterion (TPFC). Three different crack configurations under tension and bending loads made of thin‐sheet 2219‐T87 aluminium alloy were analysed. A very wide range of widths (w = 76 to 2440 mm) and initial crack‐length‐to‐width ratios (ci/w = 0.05 to 0.95) were considered. A relation from the original TPFC was shown to fit the simulated fracture behaviour fairly well for the three different specimen types for net‐section stresses less than the yield stress (σy) of the material. Comparisons were also made on measured and simulated fracture tests on middle‐crack‐tension specimens. A relation between the elastic stress‐intensity factor, KIe, and net‐section stress, Sn, at failure was found to be linear for Sn < σy. The results demonstrated the transferability of the TPFC for different crack configurations for Sn < σy, but further study is needed for Sn > σy. 相似文献
19.
This investigation is aimed to examine the monotonic and cyclic fracture behaviour of AISI 304LN stainless steel and its weldments, in order to assess their integrity under seismic loading conditions. The monotonic fracture resistance of the steel has been determined using standard J-integral technique; whereas the cyclic fracture resistance has been evaluated using periodic unloading to different extents fixed by pre-determined R-ratio. Comparison of the fracture toughness values of the steel estimated under monotonic and cyclic loading indicates that the latter could be as low as one-fifth of the former. The observed degradation in cyclic fracture resistance has been attributed to crack tip re-sharpening during cyclic loading. 相似文献
20.
Pilot studies are conducted to characterize the macroscopic fracture resistance behavior using linear elastic fracture mechanics and attempt to quantify the fracture parameters in which may govern the fracture and failure patterns of stitched warp-knit fabric composites. Methods based on the J-integral method and Betti's reciprocal theorem in extracting the fracture parameters, critical stress intensity factors, T-stress, and the second term of y(r,0) near the crack tip prior to fracture initiation are formulated. Two fracture criteria, [c,r
c] and [c,r
c] are attempted to characterize the failure initiation for the fiber-dominated failure mode and self-similar crack extension in a given thickness of the laminate. Based on linear elastic fracture mechanics principle, these criteria are transformed into crack-driving forces [K
Q,T] and [K
Q,g
32]. The two-parameter fracture criteria, [K
Q,T] and [K
Q,g
32] provide a good correlation for the CCT and SENT specimens, but not for the high constraint CT specimens. With the limited experimental data, the results tend to show that the large tensile T-stress and large magnitude of negative g
32 may inhibit the crack extension in the same crack plane and promote crack kinking. 相似文献