首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
目的探索工艺参数对微观组织和力学性能的影响。方法材料选用铸态ZK60合金,通过试验研究挤压比、往复挤压道次对镁合金微观组织演变的影响,分析挤压比对T6处理的材料力学性能的影响。结果在一定范围内增大挤压比和增加往复挤压道次均有助于组织细化。在350℃、挤压比为8时,经过8道次往复挤压变形可以细化晶粒到3μm左右。晶粒尺寸达到5μm以下,增加往复道次使晶粒细化的效果不明显,但有利于晶粒的均匀化。在往复挤压温度350℃,挤压比8,往复道次8的条件下,经过T6处理的试样具有良好的综合力学性能,伸长率达到22.1%,抗拉强度为308.6 MPa。结论 ZK60镁合金在往复挤压和动态再结晶过程中,晶粒的细化与往复挤压道次和挤压比有关。若挤压比较小,尽管往复道次较大,但是晶粒细化的效果不明显;合理的匹配挤压比与往复道次,能获得细小、均匀的组织。  相似文献   

2.
将铸态Mg-5Sn-1.5Al-1Zn-0.8Si镁合金进行往复挤镦变形,采用OM、SEM和EDS等分析合金组织,重点研究了往复挤镦对该合金显微组织、力学性能及断口形貌的影响。结果表明:多道次往复挤镦可显著细化实验合金的显微组织,经过挤镦变形后,平均晶粒尺寸由铸态的50μm细化至3μm左右,组织中的第二相被破碎且呈现弥散分布。往复挤镦可大幅度提高实验合金的力学性能,其硬度、抗拉强度和延伸率分别比铸态试样提高了47%、155%和110%,挤镦变形合金的拉伸断口出现大量韧窝,断裂方式为典型的韧性断裂。  相似文献   

3.
利用等径角挤压(ECAP)技术挤压铜银合金,对挤压后的铜银合金的组织和耐磨性能进行了研究.结果表明,ECAP实现了铜银合金晶粒的细化,由最初的5~6μm细化到2.5μm左右;并且硬度和耐磨性能都有提高,显微硬度提高70%,磨损失重降低19%左右.  相似文献   

4.
挤压Zn-Cu-Ti合金的组织及其力学性能   总被引:3,自引:0,他引:3  
采用Zn-Ti中间合金等制备了不同铜含量的锌合金,370℃/4h均匀化后在300℃对合金进行了热挤压加工。通过X射线衍射分析、扫描电镜分析和能谱分析以及力学性能测试,研究了合金的微观组织和力学性能之间的关系。结果表明,Zn-Cu-Ti合金主要由锌的固溶体η相,TiZn15相和CuZn4相组成,Ti元素的加入细化了合金的显微组织,提高了合金的力学性能;热挤压过程中,合金发生动态再结晶和局部再结晶晶粒长大现象,TiZn15相和CuZn4相被破碎后沿挤压方向分布于晶界处,有助于阻碍再结晶晶粒的长大;Cu含量在0.5%~3.0%范围内,随着含铜量的增加,Zn-Cu-Ti合金的强度和硬度增大,当Cu含量超过2.0%时伸长率有下降趋势;由于挤压过程中发生了动态再结晶在一定程度上抵消了加工引起的硬化,合金挤压态硬度较铸态硬度提高不大。  相似文献   

5.
采用自制的90°模具,经Bc路径在温度为300℃下研究对比了铸态及不同道次的等通道挤压(ECAP)态AZ81镁合金微观组织和力学性能.结果表明ECAP随着挤压道次的增加,AZ81镁合金显微组织和力学性能发生显著变化.当挤压到4道次,平均晶粒尺寸由原来铸态的145um细化为9.6um,拉伸断口韧窝明显增多;抗拉强度从180 MPa提高到306 MPa,延伸率和硬度分别达到15.8%和142HL.分析表明,AZ81镁合金在高温挤压过程中Mg17Al12相粒子被破碎,并部分溶入基体,$-Mg基体与%-Mg17Al12相互相阻碍其晶粒长大,获得细小晶粒组织.  相似文献   

6.
将铸态Mg92.5Zn6.4Y1.1镁合金往复挤压2,4,8,12不同道次,然后分别正挤压制成φ12mm的棒材.采用OM,XRD及DTA研究了往复挤压不同道次镁合金的组织和力学性能.研究表明,铸态Mg92.5Zn6.4Y1.1镁合金往复挤压后,组织得到显著细化,力学性能得到大幅度提高,获得了高强韧镁合金.2道次后,晶粒约5μm,拉伸强度超过300MPa,伸长率高达20%.继续增加往复挤压道次,晶粒细化和拉伸性能提高均不明显,当往复挤压12道次时,拉伸强度明显降低,而伸长率达到23%.Mg92.5Zn6.4Y1.1镁合金的伸长率大幅度提高归因于在往复挤压过程中,铸态组织中的缩松、缩孔等缺陷闭合和成分偏析非均匀相的分布均匀化,以及晶粒的破碎、回复和动态再结晶所引起的晶粒细化及材料的流动,最终获得完全致密、细小而均匀的等轴晶组织.  相似文献   

7.
采用连续等通道转角挤压工艺,以连续的方式对Al-Ti-C合金进行多道次挤压,通过观察微观组织演化,探讨晶粒细化机理和力学性能变化。结果表明:连续等通道转角挤压工艺可有效细化Al-Ti-C合金微观组织,晶粒尺寸减小至1μm左右,形变诱导是变形过程中最主要的晶粒细化机制;高密度位错堆积引起Al基体和TiAl_(3)界面的裂纹以及TiAl_(3)内部的空洞产生,裂纹进一步扩展贯穿整个TiAl_(3)颗粒,最终导致第二相TiAl_(3)组织的细化,同时细小的第二相TiAl_(3)组织的钉扎机制和剪切机制促进了Al基体细化;连续等通道转角挤压1道次后,合金硬度提升最明显,与原始态相比提高59.2%;之后随挤压道次的增加,硬度提升的趋势变缓,合金塑性下降,韧性提高。  相似文献   

8.
于文浩  李宁  颜家振  胡斌 《功能材料》2011,42(Z3):408-410,415
系统地研究了挤压温度和挤压比对Mg-0.6Zr-0.5Y合金力学和阻尼性能的影响规律.采用光学金相显微镜、电子式万能试验机及动态机械分析仪(DMA)等手段分析合金显微组织、力学和阻尼性能的变化,并讨论了晶粒细化与合金力学和阻尼机理之间的内在联系.研究发现,合金在挤压过程中发生了动态再结晶,晶粒显著细化,使综合力学性能得...  相似文献   

9.
为了提高Mg-3Al-0.4Mn合金的常温力学性能,研究了铸态和挤压态下Si含量对AM30合金的组织和力学性能的影响.结果表明,增加Si的添加量会生成粗大的汉字状的Mg2Si相,不利于提高合金的力学性能;但经过挤压后,呈汉字状Mg2Si相破碎,变成颗粒细小的Mg2Si相,晶粒细化,有利于提高合金的性能.  相似文献   

10.
卢庆亮 《材料导报》2006,20(10):163-163
镁及镁合金作为目前工业应用中最轻的结构材料之一,具有良好的应用前景,然而由于镁合金自身强度较低、抗氧化性能差以及高温抗蠕变性能差等问题,使其作为某些结构件的应用受到限制,为进一步扩大其应用,人们采用了多种方法来提高其综合力学性能.二十面体准晶相(简称Ⅰ-phase)由于其特殊的结构而具有优异的力学性能,如高强度、高硬度等,将Ⅰ-phase作为一种增强相引入到镁合金中可大大提高镁合金的力学性能,为新型镁合金的开发和实际应用提供了一种新途径.本文采用常规铸造法制备了含有粗大网状Ⅰ-phase和α-Mg两相组织的Mg-Zn-Y合金.研究了合金含量及Zn/Y比对Mg-Zn-Y合金显微组织和力学性能的影响,探讨了热处理工艺对合金中相析出行为及Ⅰ-phase热稳定性的影响.以时效处理后的Mg-Zn-Y合金为研究对象,研究了两种塑性变形工艺(常规热挤压和等径角挤压变形)对合金显微组织和力学性能的影响,并对合金的细化机制、断裂行为与强化机制进行了研究.研究结果表明,在Y含量为0.3%~2.0%(at),Zn含量为1.7%~6.0%(at)的富镁Mg-Zn-Y合金中,合金的铸态组织及相组成取决于Zn/Y比和Zn含量,Zn/Y比为6时,合金的铸态组织由α-Mg基体和晶界上富镁相与Ⅰ-phase两相共晶组织组成;在所研究的合金成分范围内,合金中Ⅰ-phase的形成及其体积分数与合金的凝固速度有关,采用快速凝固的方法得到的合金中,由于第二相的形核及长大受到抑制,形成的Ⅰ-phase的体积分数相对于常规铸造工艺下制备的合金中Ⅰ-phase的含量有所减少,同时发现,合金的极限抗拉强度和屈服强度随合金中Ⅰ-phase体积分数的增加而增加,但合金的延伸率略有降低;在400℃、24h的热处理工艺下,Mg95Zn4.3Y0.7合金基体上有球形Ⅰ-phase析出,且析出的Ⅰ-phase在随后的时效处理中表现出热稳定性;在190℃不同时效时间下合金基体中的析出相为密排六方结构的MgZn2相,其析出行为与Mg-Zn二元合金类似.Mg-Zn-Y合金的热挤压结果表明,通过挤压变形可以显著细化合金的晶粒组织,合金的晶粒大小可由变形前的40~60μm减小到8~15μm,在挤压过程中位于晶界的Ⅰ-phase被破碎并较均匀地分布在基体合金中,随着挤压比的增大和挤压温度的降低,晶粒进一步细化,Ⅰ-phase的弥散程度增加.挤压变形可以显著提高Mg-Zn-Y合金的强度、硬度和延伸率;随着挤压比的增大,合金的强度、硬度和延伸率均有所增加;在所研究的3种合金中,Mg95Zn4.3Y0.7合金在523K以25:1的挤压比挤压后,具有较高的力学性能,其极限抗拉强度为287MPa,屈服强度为203MPa,延伸率为14.1%.对于预挤压态Mg-Zn-Y合金的ECAP变形结果表明,ECAP对于预挤压态Mg-Zn-Y合金组织的细化是一个不断加强的过程,1道次ECAP变形后,在一些粗大晶粒之间分布着许多细小的晶粒,随变形道次的增加,原始粗大的晶粒消失,形成均匀细小的等轴晶粒,平均晶粒尺寸为1~3μm,同时在ECAP过程中Ⅰ-phase被破碎并呈弥散分布.ECAP变形1道次可以显著提高Mg-Zn-Y合金的抗拉强度、屈服强度和延伸率,Mg95Zn4.3Y0.7合金ECAP变形1道次后力学性能指标σb=331MPa,σ0.2=223MPa,δ=19.4%.Mg-Zn-Y合金以A、BA、Bc、C等4种不同工艺路线进行8道次ECAP变形后的显微组织差异不大,均形成细小的等轴晶粒;4种工艺路线在1~8道次的变形过程中,合金的力学性能变化不同,对于路径A和BA,随着变形道次的增加,合金的抗拉强度、屈服强度和延伸率变化幅度不大,对于路径BC和C,变形道次超过4次后,产生的变形织构的弱化作用导致合金的屈服强度迅速降低,但是合金仍保持较高的抗拉强度和延伸率.通过对ECAP变形过程中Mg-Zn-Y合金晶粒细化过程的分析,结合其力学性能的变化得出ECAP变形的细化机制和准晶相强化机制:ECAP对于准晶增强Mg-Zn-Y合金的细化机制主要是基体在不同变形路径下的连续剪切变形机制和准晶粒子对于基体的剪切及钉扎机制;准晶增强Mg-Zn-Y合金ECAP变形过程中存在3种强化机制:细晶强化、第二相粒子强化和位错强化,3种强化机制分别在ECAP变形的不同阶段起主导作用,在共同的强化作用下提高合金的强度.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号