首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Near-infrared reflectance spectroscopy (NIRS) equations were developed for rapid analysis of curds during Cheddar cheese making. The coefficients of determination (R2) for NIRS and chemical analysis were: moisture (0.982), protein (0.965), fat (0.951), and lactose (0.909). When validation samples were compared by NIRS and chemical analysis, the R2s were moisture (0.984), protein (0.964), fat (0.957), and lactose (0.982). These results suggest that NIRS is applicable for rapidly monitoring chemical changes in curds.  相似文献   

2.
Reduced-fat cheese showed higher levels of ethanol and lower acetoin than full-fat samples throughout ripening regardless of conditions. Total headspace volatiles, as well as butanoic and hexanoic acids, increased with ripening time and temperature. Full- and reduced-fat cheeses developed distinctly different headspace volatile profiles throughout ripening. The effects of ripening conditions were more notable in full-fat samples. Ripening reduced-fat Cheddar cheese at an elevated temperature for a limited time may enhance development of some desirable volatiles such as butanoic acid.  相似文献   

3.
Cheddar cheese is a biochemically dynamic product that undergoes significant changes during ripening. Freshly made curds of various cheese varieties have bland and largely similar flavors and aroma and, during ripening, flavoring compounds are produced that are characteristic of each variety. The biochemical changes occurring during ripening are grouped into primary events including glycolysis, lipolysis, and proteolysis followed by secondary biochemical changes such as metabolism of fatty acids and amino acids which are important for the production of secondary metabolites, including a number of compounds necessary for flavor development. A key feature of cheese manufacture is the metabolism of lactose to lactate by selected cultures of lactic acid bacteria. The rate and extent of acidification influence the initial texture of the curd by controlling the rate of demineralization. The degree of lipolysis in cheese depends on the variety of cheese and may vary from slight to extensive; however, proteolysis is the most complex of the primary events during cheese ripening, especially in Cheddar-type cheese.  相似文献   

4.
将分离自西藏灵菇的益生性植物乳杆菌1-2通过在杀菌乳中添加活菌数8.0、9.0(lg(CFU/mL))和在排乳清后添加于凝乳块8.0(lg(CFU/g))的方式分别加入到切达干酪中,考察植物乳杆菌活菌数量、添加方式和成熟时间对干酪挥发性风味物质组成的影响。利用固相微萃取和气相色谱-质谱联用技术检测出对照组干酪的风味物质26种,益生菌干酪组风味物质30种,添加植物乳杆菌1-2可产生乙苯、十二烷、己醇和丙酮4种挥发性风味物质。成熟时间对干酪风味的影响最大,随成熟时间的延长,益生菌干酪组中苯含量显著增加,而对照组干酪在成熟12周时才检测到苯。益生菌添加量和添加方式对干酪挥发性风味的影响相似,丁酸受益生菌活菌数和添加方式的影响最大,益生菌干酪组成熟12周时,丁酸含量最高达对照组的3.96倍(P<0.05)。在杀菌乳中添加益生菌活菌数8.0(lg(CFU/mL))组和9.0(lg(CFU/mL))组干酪中挥发性风味物质含量有显著差异,但在杀菌乳中添加高活菌数9.0(lg(CFU/mL))和在排乳清后添加低活菌数8.0(lg(CFU/g))于凝乳块中对干酪挥发性风味的形成具有相似的影响。本研究结果为改进益生菌干酪的加工工艺和风味品质提供了实验依据。  相似文献   

5.
A 2-D gel electrophoretic method, consisting of isoelectric focusing and alkaline urea-PAGE was used to monitor proteolysis during ripening (180d, 5°C and 8°C) of full- and reduced-fat Cheddar cheese. The method enabled quantifying changes in levels of peptides in cheese with good spot-resolution. Results can complement those from other analyses, especially those for determining low MW peptides. Notable effects were found for cheese composition and ripening temperature on gel pattern and on relative levels of selected proteolysis products. In both cheese varieties, most peptides reached a maximum during the first 3 ripening months and gradually disappeared as ripening advanced.  相似文献   

6.
The effect of cycled high pressure treatment of milk on the yield, sensory, and microbiological quality of Cheddar cheese was investigated. Cheddar cheeses were made from pasteurized, raw, or pressure treated milk according to traditional methods. Flavor scores from trained dairy judges were not different for pasteurized and pressurized milk cheeses (P≤0.05). Percent moisture and wet weight yields of pressure treated milk cheeses were higher than pasteurized or raw milk cheeses (P≤0.05). Microbiological quality of pressurized milk cheeses was comparable to pasteurized milk cheeses. Texture defects were present in pressurized milk cheeses and were attributed to excess moisture. High pressure treatment of milk shows promise as an alternative to heat pasteurization prior to cheesemaking.  相似文献   

7.
Up to six-fold increase in plasmin activity in milk did not significantly (p<0.05) affect the composition (moisture, protein, NaCl) of cheese, although a slight increase in moisture and decrease in protein content of the cheese was noted. Proteolysis in cheese increased with plasmin activity, resulting in improved flavor and overall quality of the cheese after 3 and 6 months ripening. Consistently, increasing the plasmin activity in milk about three-fold resulted in cheese of superior sensory quality.  相似文献   

8.
以不同氯化钠(NaCl)添加量(0%、1%、2%、3%)的切达干酪(Cheddar cheese)为材料,对其90 d成熟期内的理化指标和成熟变化进行质构特性分析和介电特性测试,研究NaCl添加量对切达干酪成熟发育的影响。结果表明,NaCl添加量对干酪的理化指标有显著影响。NaCl添加量增加,干酪水分含量和水分活度下降、脂肪含量增加,并具有显著的相关性。低添加量NaCl对干酪成熟度的促进作用明显高于高添加量,NaCl添加量为1%、2%对干酪蛋白水解为指标的成熟度有显著加速作用;高NaCl添加量(3%)对干酪成熟过程的蛋白质水解有显著的抑制作用;切达干酪相对介电常数与NaCl的添加量无显著的相关性,而干酪介电损耗因子随NaCl添加量的增加而上升。并且,NaCl添加量对切达干酪成熟期内的硬度、咀嚼性有显著影响。  相似文献   

9.
Applying water extracts from Cheddar cheese to an octadecyl vinyl alcohol copolymer column using a reliable auto-sampling system provided highly repeatable HPLC patterns. Two batches of standard samples of mild, medium, sharp, and extra-sharp and one batch of abused samples (rapidly aged under abnormal conditions) were analyzed. Principal component similarity (PCS) analysis indicated similar shifts of plots due to aging of the standard batches, while the plot for the abused batch deviated from the pathway of normal aging. PCS may be useful for analysis of accelerated ripening effects as well as finding unusual samples during quality control.  相似文献   

10.
Analysis of Cheddar cheese flavor using trained sensory and grading panels is expensive and time consuming. A rapid and simple solvent extraction procedure in combination with Fourier transform infrared spectroscopy was developed for classifying Cheddar cheese based on flavor quality. Fifteen Cheddar cheese samples from 2 commercial production plants were ground into powders using liquid nitrogen. The water-soluble compounds from the cheese powder, without interfering compounds such as fat and protein, were extracted using water, chloroform, and ethanol. Aliquots (10 μL) of the extract were placed on a zinc selenide crystal, vacuum dried, and scanned in the mid-infrared region (4,000 to 700 cm−1). The infrared spectra were analyzed by soft independent modeling of class analogy (SIMCA) for pattern recognition. Sensory flavor quality of these cheeses was determined by trained quality assurance personnel in the production facilities. The SIMCA models provided 3-dimensional classification plots in which all the 15 cheese samples formed well-separated clusters. The orientation of the clusters in 3-dimensional space correlated well with their cheese flavor characteristics (fermented, unclean, low flavor, sour, good Cheddar, and so on). The discrimination of the samples in the SIMCA plot was mainly due to organic acids, fatty acids and their esters, and amino acids (1,450 to 1,350 and 1,200 to 990 cm−1), which are known to contribute significantly to cheese flavor. The total analysis time, including the sample preparation time, was less than 20 min per sample. This technique can be a rapid, inexpensive, and simple tool to the cheese industry for predicting the flavor quality of cheese.  相似文献   

11.
Samples were subjected to uniaxial compression at six deformation rates until fracture occurred. Fracture strain, stress and work, deform-ability modulus, and biaxial extensional viscosity were determined. No significant effect of surface lubrication was observed on magnitudes of the selected mechanical properties. Irrespective of deformation rate Cheddar cheese fractured at a strain of 55.5% when aspect ratio was 0.65, and at a strain of 59.7% when aspect ratio was 1.0. The fracture stress ranged from 34 to 107 kPa and fracture work from 22 to 63 kJ/m3. Mean deformability modulus of Cheddar cheese was 240 kPa. Biaxial extensional viscosity was a decreasing function of strain rate.  相似文献   

12.
Sampling Technique for Cheese Analysis by FTIR Spectroscopy   总被引:1,自引:0,他引:1  
A microtome sampling technique was used prior to cheese analysis with FTIR spectroscopy. Well separated fat- and protein-related bands were obtained in the spectra of Cheddar and Mozzarella cheese samples. The absorbancy intensity of fat- and protein-related bands increased with an increase in fat and protein contents. This technique could be used to study the chemical groups and to rapidly determine fat and protein in cheese samples.  相似文献   

13.
尝试通过添加不同剂量的脂质体微胶囊化中性蛋白酶来加快Cheddar干酪的成熟;测定了不同成熟期内干酪的pH值、可溶性氮含量以及干酪的质构的变化,经过综合感官分析,确定了最适添加量。结果表明,添加脂质体微胶囊中性蛋白酶加快了干酪的成熟,其中,0.01%的添加量既加快了干酪成熟,又没有导致干酪在风味、质构等品质方面的缺陷。  相似文献   

14.
随着干酪市场的日益增长,开发新型风味干酪成为新的趋势.根据前期实验结果,研究选定了3种制作添加酿酒酵母的切达干酪(KY组、KH组、KC组)加工工艺,通过顶空固相微萃取和气相色谱-质谱联用技术、聚类分析及感官评价对干酪中挥发性风味化合物进行测定及分析,以此来评价酿酒酵母在切达干酪中的应用前景.干酪成熟过程中,3组干酪中挥...  相似文献   

15.
Yield, textural, proteolysis, melting, and sensory properties of exopolysaccharide-producing Lactobacillus paracasei on properties of half-fat (about 16 g fat/100 g cheese) Cheddar cheese during ripening at 8℃ for up to six months were investigated. The results revealed that B-3 cheese, made with 2.0% (v/v) high yield exopolysaccharide-producing L. paracasei in combination with 0.011% (w/w) commercial Cheddar culture (B-3 cheese), had a 10.15, 7.71, and 10.04% separately increase in moisture content and had a 7.70, 5.05, and 6.76% separately increase in yield compared with B-2, B-4, and B-5 cheese, texture and melting characteristics were significantly improved (P < 0.05), sensory score surpassed B-4 and B-5 cheese and was similar to the full-fat one. Any differences of B-3 cheese detected among half-fat Cheddar cheeses were attributed to the presence of high yield exopolysaccharide-producing L. paracasei.  相似文献   

16.
Fat reduction in Cheddar cheese resulted in an increase in viscoelasticity as evidenced by increases in G’and G”. Proteolysis during ripening led to softening of all cheeses and thus decreases in G’and G” for cheeses containing 34, 27, and 20% fat. Cheese with 13% fat showed a decrease in G’upon ripening, but no change in G”. This lack of change in viscous behavior may be important to the texture of reduced-fat Cheddar cheese and overall acceptability. Dynamic rheological testing was helpful in understanding rheological behavior associated with fat reduction in cheese.  相似文献   

17.
18.
The development of on-line sensors for compositional analysis during cheese manufacture is desirable for improved quality control. Dielectric properties of a food product are principally determined by its moisture and salt content. This indicates that dielectric spectroscopy may offer a rapid, on-line and non-destructive method for the determination of moisture and salt content of process cheese. However limited information is available in the literature on the dielectric properties of process cheese. Therefore the aims of this study are to investigate the dielectric properties of process cheese samples over a range of compositional parameters and to assess the potential of dielectric spectroscopy to improve process control during process cheese manufacture. Dielectric spectra of process cheese samples were measured using a coaxial line probe between 300 MHz and 3 GHz. A clear tend was observed between higher moisture content and increases in the dielectric constant. Inorganic salt content was found to have a major influence on the loss factor. The dielectric data obtained was used to develop chemometric models for the prediction of moisture and inorganic salt content of two experimental sets of process cheese samples (exp A and exp B). The root mean square error of prediction (RMSEP) for the models developed to predict moisture content were 0.524% (w/w) (exp A), and 0.423% (w/w) (exp B), while the RMSEP of the inorganic salt models were 0.220% (w/w) (exp A), and 0.263% (w/w) (exp B). It was concluded that dielectric spectroscopy has potential application for compositional analysis in process cheese manufacture.  相似文献   

19.
Cooling freshly formed Cheddar cheese requires close control for uniform and consistent flavor. Cheese in 18–kg blocks collected after pressing, at 30–35°C was used. Samples were cooled rapidly to 12 25°C as small pieces individually vacuum-wrapped at a local production site. The extent of proteolysis, total acidity, pH, lactose and organic acids was quantified after storage at these temperatures. Theoretical and empirical equations describing the influence of time and temperature on these chemical indicators were developed through nonlinear statistical methods. The kinetic expressions were applied to generate recommendations for the cooling rate and subsequent aging temperature of Cheddar cheese blocks.  相似文献   

20.
藏灵菇KW1在SDM培养基、37 ℃条件下发酵产胞外多糖(exopolysaccharide,EPS)达624.82?mg/L,经分离纯化及单糖分析测定,明确此多糖由鼠李糖、阿拉伯糖、甘露糖、葡萄糖和半乳糖组成,相对物质的量比1∶3.02∶2.12∶1.59∶3.04。红外光谱结果显示该EPS表现出典型的多糖吸收峰模式;扫描电镜显示,藏灵菇KW1?EPS微观结构中分布着许多球形结构和片状结构,且表面比较光滑;原子力显微观察表明,EPS具有一定聚集现象,呈现出膜状、簇状结构。将藏灵菇KW1?EPS应用于发酵剂菌株培养以及切达干酪制作中,结果表明EPS对发酵剂菌株生长有促进作用,并且随着添加量的增加,这种作用先增强后减弱。同时EPS的加入能提高干酪得率、持水能力以及成熟期间的活菌数。采用气相色谱-质谱联用从干酪中检测出69?种挥发性物质,香气活性值显示共有17?种风味物质对EPS干酪整体风味有贡献,其中丁酸乙酯、己酸乙酯、辛酸乙酯是关键性风味物质。本研究可为藏灵菇EPS在发酵乳制品中的应用提供一定技术参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号