首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper summarizes an extensive experimental study of composites reinforced with three-dimensional woven preforms subjected to tensile, compressive and in-plane shear loading. Three innovative three-dimensional woven architectures were examined that utilize large 12 K and 24 K IM7 carbon tows, including two ply to ply angle interlock architectures and one orthogonal architecture. Additionally, a two-dimensional quasi-isotropic woven material was evaluated for comparison. Loads were applied in both the warp and the weft directions for tensile and compressive loading. Digital image correlation was used to investigate full field strains leading up to quasi-static failure. Experimental results including ultimate strengths and moduli are analyzed alongside representative failure modes. The orthogonal woven material was found to have both greater strength and modulus in tension and compression, though a ply to ply woven architecture was found to outperform the remaining three-dimensional architectures. Recommendations are made for improving the manufacturing processes of certain three-dimensional woven architectures.  相似文献   

2.
Compression properties of z-pinned composite laminates   总被引:4,自引:0,他引:4  
The effect of z-pinning on the in-plane compression properties and failure mechanisms of polymer laminates is experimentally studied in this paper. The reduction to the compression modulus, strength and fatigue performance of carbon/epoxy laminates with increasing volume content and diameter of pins is determined. The elastic modulus decreases at a quasi-linear rate with increasing pin content and pin diameter. Softening is caused by fiber waviness around the pins and reduced fiber volume content due to volumetric swelling of the laminate from the pins. A simple model is presented for calculating the compression modulus of pinned laminates that considers the softening effects of fiber waviness and fiber dilution. The compression strength and fatigue life also decrease with increasing volume content and diameter of the pins. The strength and fatigue properties are reduced by fiber kinking caused by fiber waviness around the pins and the reduced fiber content caused by swelling. The deterioration to the compression properties is also dependent on the fiber lay-up pattern of the laminate, with the magnitude of the loss in properties increasing with the percentage of 0° (load bearing) fibers in the laminate. The paper gives suggestions for minimizing the loss to the compression properties to laminates due to pinning.  相似文献   

3.
Multiwalled carbon nanotubes (MWCNTs)/epoxy nanocomposites were fabricated by using ultrasonication and the cast molding method. In this process, MWCNTs modified by mixed acids were well dispersed and highly loaded in an epoxy matrix. The effects of MWCNTs addition and surface modification on the mechanical performances and fracture morphologies of composites were investigated. It was found that the tensile strength improved with the increase of MWCNTs addition, and when the content of MWCNTs loading reached 8 wt.%, the tensile strength reached the highest value of 69.7 MPa. In addition, the fracture strain also enhanced distinctly, implying that MWCNTs loading not only elevated the tensile strength of the epoxy matrix, but also increased the fracture toughness. Nevertheless, the elastic modulus reduced with the increase of MWCNTs loading. The reasons for the mechanical property changes are discussed.  相似文献   

4.
Bio-composites with poly(lactic) acid as matrix and various algae (red, brown and green) as filler were prepared via melt mixing. Algae initial size (below 50 μm and between 200 and 400 μm) and concentration (from 2 to 40 wt%) were varied. First, algae morphology, composition and surface properties are analysed for each algae type. Second, an example of algae particle size decrease during processing is given. Finally, tensile properties of composites are analysed. The surface of algae flakes was covered with inorganic salts affecting filler–matrix interactions. The Young’s modulus of composites increased at 40 wt% load of algae as compared with neat PLA although the strain at break and tensile strength decreased. In most cases the influence of algae type was minor. Larger flakes led to better mechanical properties compared to the smaller ones.  相似文献   

5.
Review of the mechanical properties of carbon nanofiber/polymer composites   总被引:1,自引:0,他引:1  
In this paper, the mechanical properties of vapor grown carbon nanofiber (VGCNF)/polymer composites are reviewed. The paper starts with the structural and intrinsic mechanical properties of VGCNFs. Then the major factors (filler dispersion and distribution, filler aspect ratio, adhesion and interface between filler and polymer matrix) affecting the mechanical properties of VGCNF/polymer composites are presented. After that, VGCNF/polymer composite mechanical properties are discussed in terms of nanofibers dispersion and alignment, adhesion between the nanofiber and polymer matrix, and other factors. The influence of processing methods and processing conditions on the properties of VGCNF/polymer composite is also considered. At the end, the possible future challenges for VGCNF and VGCNF/polymer composites are highlighted.  相似文献   

6.
In this study the effect of moisture absorption on the mechanical properties of glass-reinforced polyester composites is evaluated using both destructive and nondestructive tests. The composite resins were produced with two different production processes, while the mechanical properties of the composite materials were measured using DMA destruction tests. According to the DMA tests, the dependency in terms of temperature for the real component of the complex elastic modulus (E′), the imaginary component of the complex elastic modulus (E″), as well as tan(δ) can be traced. For a more efficient use of the composite materials, the compliance tensor was obtained with nondestructive tests based on ultrasound. A method for the generation and reception of Lamb waves in plates of composite materials is described, based on using air-coupling, low-frequency, ultrasound transducers in a pitch–catch configuration. The results of the nondestructive measurements made in this study are in good agreement with those obtained when using the DMA destructive tests.  相似文献   

7.
Bamboo plastic composites were fabricated from polyvinyl chloride (PVC) and moso bamboo particles (BP). In order to improve the interfacial interaction between BP and PVC, as well as to obtain composites with outstanding mechanical properties, the roles of hydrothermal treating temperatures (120, 140, 160, 180, 200, 220, 240, 260 and 280 °C) on characteristics of BP and properties of the PVC/BP composites were investigated. Results showed that hydrothermal modification improved the surface property of BP and wiped off hemicelluloses and pectin. A uniform dispersion of BP in PVC matrix was observed by SEM with hydrothermal treatment. Tensile strength, tensile modulus and flexural strength of the composites achieved their maximal values of 15.79 MPa, 6702.26 MPa and 39.57 MPa, respectively, with 180 °C hydrothermal treatment. The highest values of elongation at break and flexural deformation were 3.75 ± 0.20% with 200 °C hydrothermal modification and 36.22 ± 2.70% with 140 °C hydrothermal modification, respectively. Due to more decomposition of hemicellulose, the composites expressed lower water absorption and higher thermal stability when the hydrothermal treating temperature exceed 160 °C.  相似文献   

8.
The effect of z-pin length on the mode I and mode II delamination toughness and fatigue resistance of z-pinned carbon-epoxy composites is investigated. Experimental testing and mechanical modelling reveals that both the mode I fracture toughness and fatigue resistance increase with the z-pin length due to increased bridging traction loads generated by elastic stretching and pull-out of the pins. The opposite trend occurs for mode II toughness, which decreases with increasing z-pin length due to lower traction loads arising from restrictions on the shear-induced rotation and pull-out of the pins. The mode II fatigue resistance is increased by z-pinning, although it is not dependent on the z-pin length. Increasing the z-pin length beyond a critical size also changes the mode I and mode II delamination fracture and fatigue processes from single to multiple cracking. The effect of z-pin length on the delamination toughening and fatigue strengthening mechanisms is determined.  相似文献   

9.
The thermal, mechanical and ablation properties of carbon fibre/phenolic composites filled with multiwall carbon nanotubes (MWCNTs) were investigated. Carbon fibre/phenolic/MWCNTs were prepared using different weight percentage of MWCNTs by compression moulding. The samples were characterized by scanning electron microscopy (SEM), flexural tests, thermal gravimetric analysis and oxyacetylene torch tests. The thermal stability and flexural properties of the nanocomposites increased by increasing MWCNTs content (wt% ⩽1), but they decreased when the content of MWCNTs was 2 wt%. The linear and mass ablation rates of the nanocomposites after modified with 1 wt% MWCNTs decreased by about 80% and 52%, respectively. To investigate the material post-test microstructure, a morphological characterization was carried out using SEM. It was shown that the presence of MWCNTs in the composite led to the formation of a strong network char layer without any cracks or opening.  相似文献   

10.
Review of z-pinned composite laminates   总被引:4,自引:0,他引:4  
A.P. Mouritz   《Composites Part A》2007,38(12):2383-2397
This paper reviews published research into polymer composite laminates reinforced in the through-thickness direction with z-pins. Research into the manufacture, microstructure, delamination resistance, damage tolerance, joint strength and mechanical properties of z-pinned composites is described. Benefits of reinforcing composites with z-pins are assessed, including improvements to the delamination toughness, impact damage resistance, post-impact damage tolerance and through-thickness properties. Improvements to the failure strength of bonded and bearing joints due to z-pinning are also examined. The paper also reviews research into the adverse effects of z-pins on the in-plane mechanical properties, which includes reduced elastic modulus, strength and fatigue performance. Mechanisms responsible for the reduction to the in-plane properties are discussed, and techniques to minimise the adverse effect of z-pins are described. The benefits and drawbacks of z-pinning on the interlaminar toughness, damage tolerance and in-plane mechanical properties are compared against other common types of through-thickness reinforcement for composites, such as 3D weaving and stitching. Gaps in our understanding and unresolved research problems with z-pinned composites are identified to provide a road map for future research into these materials.  相似文献   

11.
12.
In order to employ polyethersulfone (PES) in cryogenic engineering field, its cryogenic mechanical performance should be examined and should also be improved to meet the high requirement for cryogenic engineering application. In this work, pure PES, graphene oxide (GO)/PES, short carbon fiber (SCF)/PES, GO/SCF/PES and GO-coated SCF/PES composites are prepared using the extrusion compounding and injection molding techniques. The tensile and flexural properties of these composites are systematically investigated at a typical cryogenic temperature (77 K). It is shown that the cryogenic mechanical properties are enhanced by the addition of GO, SCFs and coated-SCFs. In particular, the GO-coated SCF/PES composites display the greatly enhanced cryogenic mechanical properties with the highest values compared to other PES composites. In addition, it is exhibited that the cryogenic mechanical properties at 77 K of PES and its composites are far higher than those at room temperature (RT).  相似文献   

13.
The microstructure, mechanical strength, dielectric properties, Doppler broadening measurements and positron life time studies of the composites containing multi walled carbon nanotubes (MWCNTs) and natural rubber (NR) are investigated. The uniform distribution of MWCNTs in the elastomer medium is studied by Raman spectroscopy and the electron microscopy images show the composite’s internal microstructure. Free volume sizes and interstitial mesopore sizes of the nanocomposites are determined by positron annihilation lifetime spectroscopy (PALS). PALS investigates the influence of the nanotubes in regulating the interphase nanoscale character. Strong interfacial interaction causes an apparent reduction of the free-volume fraction of NR probably by depressing the formation of free-volume holes in the interfacial region. The mechanical percolation and percolation observed from the dielectric measurements are correlated with the life time values. It is established that the sub-nano level free volumes and nano level structure of the composites have significant roles in regulating the mechanical properties.  相似文献   

14.
Ternary composites of a biodegradable thermoplastic matrix, Mater-Bi® (MB), with various polyolefins (PP, HDPE and PS) and hemp fibres (H) were obtained by melt mixing and characterized by SEM, OM, DSC, TGA and tensile tests. The properties of composites were compared with those of MB/polyolefin and MB/H blends. Maleic anhydride functionalized polyolefins were employed as compatibilizers. Crystallization behaviour and morphology of the composites were found to be affected by the composition, phase dispersion and compatibilizer. Thermogravimetric analysis indicated that the thermal stability of the polyolefin phase and fibres was influenced by the composition and phase structure. A significant improvement of tensile modulus and strength was recorded for composites of MB with PE and PS as compared to MB/H composites. The results indicate that incorporation of polyolefins in the biodegradable matrix, compared to binary matrix/fibre system, may have significant advantages in terms of properties, processability and cost.  相似文献   

15.
This paper investigates the through-thickness tensile behavior of woven glass fiber reinforced polymer (GFRP) composite laminates at cryogenic temperatures. Tensile tests were carried out with cross specimens at room temperature and liquid nitrogen temperature (77 K), and the through-thickness elastic and strength properties of the woven GFRP laminates were evaluated. The failure characteristics of the woven GFRP laminates were also studied by optical and laser scanning microscopy observations. A three-dimensional finite element analysis was performed to calculate the stress distributions in the cross specimens, and the failure conditions of the specimens were examined. It is found that the cross specimen is suitable for the cryogenic through-thickness tensile characterization of laminated composite materials. In addition, the through-thickness Young's modulus of the woven GFRP composite laminates is dominated by the properties of the matrix polymer in the given temperature, while the tensile strength is characterized by both, the fiber to matrix interface energy and the cohesion energy of the matrix polymer.  相似文献   

16.
Effects of linear density and yarn structure on both static and dynamic mechanical properties of ramie fiber yarn reinforced composites (RYRCs) were investigated. The failure mechanisms of RYRCs were analyzed with the aid of ultrasonic C-scan and Scanning electronic microscopy (SEM). The results showed that the tensile strength of RYRCs increased gradually with increase of the linear density of the single yarns. The maximum tensile strength was obtained when the linear density reached 67.3 tex. However, a downtrend of the tensile strength was observed with further increase of the linear density of ramie single and plied yarns. The interlaminar fracture toughness was relatively high for RYRCs made from yarns with lower linear density due to the extensive fiber bridging observed during the double cantilever beam test. Meanwhile, the linear density and structure of ramie yarn had remarkable influence on the failure mode of RYRCs during the drop weight impact test.  相似文献   

17.
A modified method for interconnecting multi-walled carbon nanotubes (MWCNTs) was put forward. And interconnected MWCNTs by reaction of acyl chloride and amino groups were obtained. Scanning electron microscopy shows that hetero-junctions of MWCNTs with different morphologies were formed. Then specimens of pristine MWCNTs, chemically functionalized MWCNTs and interconnected MWCNTs reinforced epoxy resin composites were fabricated by cast moulding. Tensile properties and fracture surfaces of the specimens were investigated. The results show that, compared with pristine MWCNTs and chemically functionalized MWCNTs, the chemically interconnected MWCNTs improved the fracture strain and therefore the toughness of the composites significantly.  相似文献   

18.
The mechanical and electrical properties of single-walled carbon nanotube (SWCNT) reinforced poly(phenylene sulphide) (PPS) composites prepared by melt-extrusion have been evaluated. The wrapping of SWCNTs in polyetherimide (PEI) and the addition of inorganic fullerene-like tungsten disulfide (IF-WS2) nanoparticles provided an effective method for dispersing the SWCNTs, leading to enhanced properties of the resulting hybrid composites. Mechanical tests demonstrated significant enhancements in stiffness, strength and toughness by the addition of both nanofillers, and the Young’s modulus of the hybrid composites was fairly well predicted by two-phase modelling. The electrical conductivity of PPS improved dramatically at low SWCNT content (0.1-0.5 wt%). At higher concentrations, the replacement of part of the SWCNTs with IF-WS2 maintained the level of conductivity of the composites. Overall, the hybrids possess superior performance than composites reinforced solely with wrapped or non-wrapped SWCNTs, and their properties can be tailored by modifying the SWCNT/IF-WS2 ratio.  相似文献   

19.
In this work, the natural sisal fibers were fibrillated by enzyme hydrolysis or mechanical disintegration into microfibrils with a width of 5-10 μm and different aspect ratios. The sisal microfibrils or microfibril mats were added into the gelatin to prepare biomass composites, by solvent-casting or solution impregnation techniques, respectively. The morphology, mechanical properties, biodegradation property, and water adsorption behaviors of the composites were investigated. It was found that the tensile strength of the composites was dramatically increased with the addition of sisal microfibrils. The degradation ratio of the composites decreased continuously with increasing the sisal fibril content. The addition of sisal microfibrils decreased the water uptake at equilibrium and the water diffusion coefficient. Scanning electron microscopy characterization showed that the sisal microfibrils were very well embedded in the gelatin matrix, showing a good interfacial adhesion.  相似文献   

20.
Mechanical properties and thermal conductivity of composites made of nanodiamond with epoxy polymer binder have been studied in a wide range of nanodiamond concentrations (0-25 vol.%). In contrast to composites with a low content of nanodiamond, where only small to moderate improvements in mechanical properties were reported before, the composites with 25 vol.% nanodiamond showed an unprecedented increase in Young’s modulus (up to 470%) and hardness (up to 300%) as compared to neat epoxy. A significant increase in scratch resistance and thermal conductivity of the composites were observed as well. The improved thermal conductivity of the composites with high contents of nanodiamond is explained by direct contacts between single diamond nanoparticles forming an interconnected network held together by a polymer binder.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号