首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Compression properties of z-pinned composite laminates   总被引:4,自引:0,他引:4  
The effect of z-pinning on the in-plane compression properties and failure mechanisms of polymer laminates is experimentally studied in this paper. The reduction to the compression modulus, strength and fatigue performance of carbon/epoxy laminates with increasing volume content and diameter of pins is determined. The elastic modulus decreases at a quasi-linear rate with increasing pin content and pin diameter. Softening is caused by fiber waviness around the pins and reduced fiber volume content due to volumetric swelling of the laminate from the pins. A simple model is presented for calculating the compression modulus of pinned laminates that considers the softening effects of fiber waviness and fiber dilution. The compression strength and fatigue life also decrease with increasing volume content and diameter of the pins. The strength and fatigue properties are reduced by fiber kinking caused by fiber waviness around the pins and the reduced fiber content caused by swelling. The deterioration to the compression properties is also dependent on the fiber lay-up pattern of the laminate, with the magnitude of the loss in properties increasing with the percentage of 0° (load bearing) fibers in the laminate. The paper gives suggestions for minimizing the loss to the compression properties to laminates due to pinning.  相似文献   

2.
    
This paper summarizes an extensive experimental study of composites reinforced with three-dimensional woven preforms subjected to tensile, compressive and in-plane shear loading. Three innovative three-dimensional woven architectures were examined that utilize large 12 K and 24 K IM7 carbon tows, including two ply to ply angle interlock architectures and one orthogonal architecture. Additionally, a two-dimensional quasi-isotropic woven material was evaluated for comparison. Loads were applied in both the warp and the weft directions for tensile and compressive loading. Digital image correlation was used to investigate full field strains leading up to quasi-static failure. Experimental results including ultimate strengths and moduli are analyzed alongside representative failure modes. The orthogonal woven material was found to have both greater strength and modulus in tension and compression, though a ply to ply woven architecture was found to outperform the remaining three-dimensional architectures. Recommendations are made for improving the manufacturing processes of certain three-dimensional woven architectures.  相似文献   

3.
Multiwalled carbon nanotubes (MWCNTs)/epoxy nanocomposites were fabricated by using ultrasonication and the cast molding method. In this process, MWCNTs modified by mixed acids were well dispersed and highly loaded in an epoxy matrix. The effects of MWCNTs addition and surface modification on the mechanical performances and fracture morphologies of composites were investigated. It was found that the tensile strength improved with the increase of MWCNTs addition, and when the content of MWCNTs loading reached 8 wt.%, the tensile strength reached the highest value of 69.7 MPa. In addition, the fracture strain also enhanced distinctly, implying that MWCNTs loading not only elevated the tensile strength of the epoxy matrix, but also increased the fracture toughness. Nevertheless, the elastic modulus reduced with the increase of MWCNTs loading. The reasons for the mechanical property changes are discussed.  相似文献   

4.
Review of the mechanical properties of carbon nanofiber/polymer composites   总被引:1,自引:0,他引:1  
In this paper, the mechanical properties of vapor grown carbon nanofiber (VGCNF)/polymer composites are reviewed. The paper starts with the structural and intrinsic mechanical properties of VGCNFs. Then the major factors (filler dispersion and distribution, filler aspect ratio, adhesion and interface between filler and polymer matrix) affecting the mechanical properties of VGCNF/polymer composites are presented. After that, VGCNF/polymer composite mechanical properties are discussed in terms of nanofibers dispersion and alignment, adhesion between the nanofiber and polymer matrix, and other factors. The influence of processing methods and processing conditions on the properties of VGCNF/polymer composite is also considered. At the end, the possible future challenges for VGCNF and VGCNF/polymer composites are highlighted.  相似文献   

5.
Bamboo plastic composites were fabricated from polyvinyl chloride (PVC) and moso bamboo particles (BP). In order to improve the interfacial interaction between BP and PVC, as well as to obtain composites with outstanding mechanical properties, the roles of hydrothermal treating temperatures (120, 140, 160, 180, 200, 220, 240, 260 and 280 °C) on characteristics of BP and properties of the PVC/BP composites were investigated. Results showed that hydrothermal modification improved the surface property of BP and wiped off hemicelluloses and pectin. A uniform dispersion of BP in PVC matrix was observed by SEM with hydrothermal treatment. Tensile strength, tensile modulus and flexural strength of the composites achieved their maximal values of 15.79 MPa, 6702.26 MPa and 39.57 MPa, respectively, with 180 °C hydrothermal treatment. The highest values of elongation at break and flexural deformation were 3.75 ± 0.20% with 200 °C hydrothermal modification and 36.22 ± 2.70% with 140 °C hydrothermal modification, respectively. Due to more decomposition of hemicellulose, the composites expressed lower water absorption and higher thermal stability when the hydrothermal treating temperature exceed 160 °C.  相似文献   

6.
Ternary composites of a biodegradable thermoplastic matrix, Mater-Bi® (MB), with various polyolefins (PP, HDPE and PS) and hemp fibres (H) were obtained by melt mixing and characterized by SEM, OM, DSC, TGA and tensile tests. The properties of composites were compared with those of MB/polyolefin and MB/H blends. Maleic anhydride functionalized polyolefins were employed as compatibilizers. Crystallization behaviour and morphology of the composites were found to be affected by the composition, phase dispersion and compatibilizer. Thermogravimetric analysis indicated that the thermal stability of the polyolefin phase and fibres was influenced by the composition and phase structure. A significant improvement of tensile modulus and strength was recorded for composites of MB with PE and PS as compared to MB/H composites. The results indicate that incorporation of polyolefins in the biodegradable matrix, compared to binary matrix/fibre system, may have significant advantages in terms of properties, processability and cost.  相似文献   

7.
A modified method for interconnecting multi-walled carbon nanotubes (MWCNTs) was put forward. And interconnected MWCNTs by reaction of acyl chloride and amino groups were obtained. Scanning electron microscopy shows that hetero-junctions of MWCNTs with different morphologies were formed. Then specimens of pristine MWCNTs, chemically functionalized MWCNTs and interconnected MWCNTs reinforced epoxy resin composites were fabricated by cast moulding. Tensile properties and fracture surfaces of the specimens were investigated. The results show that, compared with pristine MWCNTs and chemically functionalized MWCNTs, the chemically interconnected MWCNTs improved the fracture strain and therefore the toughness of the composites significantly.  相似文献   

8.
In this work, the natural sisal fibers were fibrillated by enzyme hydrolysis or mechanical disintegration into microfibrils with a width of 5-10 μm and different aspect ratios. The sisal microfibrils or microfibril mats were added into the gelatin to prepare biomass composites, by solvent-casting or solution impregnation techniques, respectively. The morphology, mechanical properties, biodegradation property, and water adsorption behaviors of the composites were investigated. It was found that the tensile strength of the composites was dramatically increased with the addition of sisal microfibrils. The degradation ratio of the composites decreased continuously with increasing the sisal fibril content. The addition of sisal microfibrils decreased the water uptake at equilibrium and the water diffusion coefficient. Scanning electron microscopy characterization showed that the sisal microfibrils were very well embedded in the gelatin matrix, showing a good interfacial adhesion.  相似文献   

9.
The mechanical and electrical properties of single-walled carbon nanotube (SWCNT) reinforced poly(phenylene sulphide) (PPS) composites prepared by melt-extrusion have been evaluated. The wrapping of SWCNTs in polyetherimide (PEI) and the addition of inorganic fullerene-like tungsten disulfide (IF-WS2) nanoparticles provided an effective method for dispersing the SWCNTs, leading to enhanced properties of the resulting hybrid composites. Mechanical tests demonstrated significant enhancements in stiffness, strength and toughness by the addition of both nanofillers, and the Young’s modulus of the hybrid composites was fairly well predicted by two-phase modelling. The electrical conductivity of PPS improved dramatically at low SWCNT content (0.1-0.5 wt%). At higher concentrations, the replacement of part of the SWCNTs with IF-WS2 maintained the level of conductivity of the composites. Overall, the hybrids possess superior performance than composites reinforced solely with wrapped or non-wrapped SWCNTs, and their properties can be tailored by modifying the SWCNT/IF-WS2 ratio.  相似文献   

10.
In this work, the effects of as-produced GO and silane functionalized GO (silane-f-GO) loading and silane functionalization on the mechanical properties of epoxy composites are investigated and compared. Such silane functionalization containing epoxy ended-groups is found to effectively improve the compatibility between the silane-f-GO and the epoxy matrix. Increased storage modulus, glass transition temperature, thermal stability, tensile and flexural properties and fracture toughness of epoxy composites filled with the silane-f-GO sheets are observed compared with those of the neat epoxy and GO/epoxy composites. These findings confirm the improved dispersion and interfacial interaction in the composites arising from covalent bonds between the silane-f-GO and the epoxy matrix. Moreover, several possible fracture mechanisms, i.e. crack pinning/deflection, crack bridging, and matrix plastic deformation initiated by the debonding/delamination of GO sheets, were identified and evaluated.  相似文献   

11.
Highly-oriented polyoxymethylene (POM)/multi-walled carbon nanotube (MWCNT) composites were fabricated through solid hot stretching technology. With the draw ratio as high as 900%, the oriented composites exhibited much improved thermal conductivity and mechanical properties along the stretching direction compared with that of the isotropic samples before drawing. The thermal conductivity of the composite with 11.6 vol.% MWCNTs can reach as high as 1.2 W/m K after drawing. Microstructure observation demonstrated that the POM matrix had an ordered fibrillar bundle structure and MWCNTs in the composite tended to align parallel to the stretching direction. Wide-angle X-ray diffraction results showed that the crystal axis of the POM matrix was preferentially oriented perpendicular to the draw direction, while MWCNTs were preferentially oriented parallel to the draw direction. The strong interaction between the POM matrix and the MWCNTs hindered the orientation movement of molecules of POM, but induced the orientation movement of MWCNTs.  相似文献   

12.
Mechanical properties and thermal conductivity of composites made of nanodiamond with epoxy polymer binder have been studied in a wide range of nanodiamond concentrations (0-25 vol.%). In contrast to composites with a low content of nanodiamond, where only small to moderate improvements in mechanical properties were reported before, the composites with 25 vol.% nanodiamond showed an unprecedented increase in Young’s modulus (up to 470%) and hardness (up to 300%) as compared to neat epoxy. A significant increase in scratch resistance and thermal conductivity of the composites were observed as well. The improved thermal conductivity of the composites with high contents of nanodiamond is explained by direct contacts between single diamond nanoparticles forming an interconnected network held together by a polymer binder.  相似文献   

13.
Chicken feather fiber (CFF)/reinforced poly(lactic acid) (PLA) composites were processed using a twin-screw extruder and an injection molder. The tensile moduli of CFF/PLA composites with different CFF content (2, 5, 8 and 10 wt%) were found to be higher than that of pure PLA, and a maximum value of 4.2 GPa (16%) was attained with 5 wt% of CFF without causing any substantial weight increment. The morphology, evaluated by scanning electron microscopy (SEM), indicated that an uniform dispersion of CFF in the PLA matrix existed. The mechanical and thermal properties of pure PLA and CFF/PLA composites were compared using dynamic mechanical analysis (DMA), thermomechanical analysis (TMA) and thermogravimetric analysis (TGA). DMA results revealed that the storage modulus of the composites increased with respect to the pure polymer, whereas the mechanical loss factor (tan δ) decreased. The results of TGA experiments indicated that the addition of CFF enhanced the thermal stability of the composites as compared to pure PLA. The outcome obtained from this study is believed to assist the development of environmentally-friendly composites from biodegradable polymers, especially for converting agricultural waste – chicken feather into useful products.  相似文献   

14.
Polyetheretherketone (PEEK) composites reinforced with carbon fibers (CFs) and nano-ZrO2 particles were prepared by incorporating nanoparticles into PEEK/CF composites via twin-screw extrusion. The effects of nanoparticles on the mechanical and wear properties of the PEEK/CF composites were studied. The results showed that the incorporation of nano-ZrO2 particles with carbon fiber could effectively enhance the tensile properties of the composites. The tensile strength and Young’s modulus of the composites increased with the increasing nano-ZrO2 content. The enhancement effect of the particle was more significant in the hybrid reinforced composites. The compounding of the two fillers also remarkably improved the wear resistance of the composites under water condition especially under high pressures. It was revealed that the excellent wear resistance of the PEEK/CF/ZrO2 composites was due to a synergy effect between the nano-ZrO2 particles and CF. CF carried the majority of load during sliding process and prevented severe wear to the matrix. The incorporation of nano-ZrO2 effectively inhibited the CF failures through reducing the stress concentration on the carbon fibers interface and the shear stress between two sliding surfaces. It was also indicated that the wear rates of the hybrid composites decreased with the increasing applied load and sliding distance under water lubrication. And low friction coefficient and low wear rate could be achieved at high sliding velocity.  相似文献   

15.
In this work, flexural strength and flexural modulus of chemically treated random short and aligned long hemp fibre reinforced polylactide and unsaturated polyester composites were investigated over a range of fibre content (0-50 wt%). Flexural strength of the composites was found to decrease with increased fibre content; however, flexural modulus increased with increased fibre content. The reason for this decrease in flexural strength was found to be due to fibre defects (i.e. kinks) which could induce stress concentration points in the composites during flexural test, accordingly flexural strength decreased. Alkali and silane fibre treatments were found to improve flexural strength and flexural modulus which could be due to enhanced fibre/matrix adhesion.  相似文献   

16.
Recently, the mankind has realized that unless environment is protected, he himself will be threatened by the over consumption of natural resource as well as substantial reduction of fresh air produced in the world. Conservation of forests and optimal utilization of agricultural and other renewable resources like solar and wind energies, and recently, tidal energy have become important topics worldwide. In such concern, the use of renewable resources such as plant and animal based fibre-reinforce polymeric composites, has been becoming an important design criterion for designing and manufacturing components for all industrial products. Research on biodegradable polymeric composites, can contribute for green and safe environment to some extent. In the biomedical and bioengineered field, the use of natural fibre mixed with biodegradable and bioresorbable polymers can produce joints and bone fixtures to alleviate pain for patients. In this paper, a comprehensive review on different kinds of natural fibre composites will be given. Their potential in future development of different kinds of engineering and domestic products will also be discussed in detail.  相似文献   

17.
This current work is concerned with the pretreatment of sugarcane bagasse (SCB) by mechanical activation (MA) using a self-designed stirring ball mill and surface modification of SCB using aluminate coupling agent (ACA). The untreated and differently treated SCBs were used to produce composites with poly(vinyl chloride) (PVC) as polymer matrix. The activation grade (Ag) measurement and Fourier transform infrared (FTIR) analysis of SCB showed that MA enhanced the condensation reaction between ACA and hydroxyl groups of the SCB fibres, which obviously increased the hydrophobicity of SCB. It was found that the mechanical properties of both the PVC composites reinforced by SCB with and without ACA modification increased with increasing milling time (tM). Scanning electron microscopy (SEM) analysis showed that MA pretreatment significantly improved the dispersion of SCB in the composites and interfacial adhesion between SCB and PVC matrix, resulting in better mechanical properties of the composites.  相似文献   

18.
Hygroscopicity, low durability, and low thermal resistance are disadvantages of lignocellulosic materials that also plague wood-plastic composites (WPCs). Hemicellulose is the most hydrophilic wood polymer and is currently considered as a sugar source for the bioethanol industry. The objective of this research is to extract hemicellulose from woody materials and enhance the properties of WPC by diminishing the hydrophilic character of wood. Hemicellulose of Southern Yellow Pine was extracted by hot-water at three different temperatures: 140, 155, and 170 °C. Wood flour was compounded with polypropylene in an extruder, both with and without a coupling agent. Injection molding was used to make tensile test samples. The thermal stability of wood flour was found to have increased after extraction. Extraction of hemicellulose improved the tensile strength and water resistance of composites, which may indicate a decrease in the hygroscopicity of wood flour, better compatibility, and interfacial bonding of the filler and matrix.  相似文献   

19.
Drawing, winding, and pressing techniques were used to produce horizontally aligned carbon nanotube (CNT) sheets from free-standing vertically aligned CNT arrays. The aligned CNT sheets were used to develop aligned CNT/epoxy composites through hot-melt prepreg processing with a vacuum-assisted system. Effects of CNT diameter change on the mechanical properties of aligned CNT sheets and their composites were examined. The reduction of the CNT diameter considerably increased the mechanical properties of the aligned CNT sheets and their composites. The decrease of the CNT diameter along with pressing CNT sheets drastically enhanced the mechanical properties of the CNT sheets and CNT/epoxy composites. Raman spectra measurements showed improvement of the CNT alignment in the pressed CNT/epoxy composites. Research results suggest that aligned CNT/epoxy composites with high strength and stiffness are producible using aligned CNT sheets with smaller-diameter CNTs.  相似文献   

20.
This paper presents morphology, physical and strength properties of piassava fiber, a very rigid fiber having a potential to be used as composite reinforcement. Composites of continuous and aligned piassava fibers with and without alkali treatment dispersed in epoxy matrix were subjected to three point bend, tensile, and Izod impact tests. Composites with fibers above 20 vol.% showed an effective reinforcement behavior both in flexural and tensile tests, while the impact energy linearly increased for the amount of piassava fibers used in this study. Fractographic study revealed a relatively weaker fiber/matrix adhesion acting as preferential site for crack nucleation. Evidence was also found for crack arrest by the fiber above 20 vol.%. This, together with spiny surface protrusion in the piassava fibers, was found to be responsible for the reinforcement of the epoxy composites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号