共查询到19条相似文献,搜索用时 0 毫秒
1.
A mutant strain of the cyanobacterium Synechocystis PCC 6803, called PAL, (PC-, delta apcAB, delta apcE), lacking phycocyanin, allophycocyanin and the core-membrane linker (Lcm), was constructed. The strain was characterized by absorption and fluorescence spectroscopy. The mutant compensates for the absence of the major PS II antenna by increasing its PS II/PS I ratio. It is stable and grows well albeit more slowly than wild type. 相似文献
2.
The phylogenetic relationships of gibbons are still open questions. We have sequenced a mitochondrial cytochrome b gene fragment from Hylobates hoolock, H. concolor, H. lar and H. syndactylus. Combined with the sequences from Garza and Woodruff (1992), we have constructed a comprehensive phylogenetic tree of the gibbons using the maximum-parsimony analysis. Our results suggested that the gibbons should be divided into four groups: (1) hoolock, (2) syndactylus, (3) agilis, lar, muelleri and klossi, and (4) concolor, which correspond to the four morphological subgenera. There are at least four distinct clades in the concolor population, which indicates that the concolor may be divided into at least four species. Therefore, those four clades should be managed separately with the same conservation effort. 相似文献
3.
4.
5.
PsbI is a small, integral membrane protein component of photosystem II (PSII), a pigment-protein complex in cyanobacteria, algae and higher plants. To understand the function of this protein, we have isolated the psbI gene from the unicellular cyanobacterium Synechocystis sp. PCC 6803 and determined its nucleotide sequence. Using an antibiotic-resistance cartridge to disrupt and replace the psbI gene, we have created mutants of Synechocystis 6803 that lack the PsbI protein. Analysis of these mutants revealed that absence of the PsbI protein results in a 25-30% loss of PSII activity. However, other PSII polypeptides are present in near wild-type amounts, indicating that no significant destabilization of the PSII complex has occurred. These results contrast with recently reported data indicating that PsbI-deficient mutants of the eukaryotic alga Chlamydomonas reinhardtii are highly light-sensitive and have a significantly lower (80-90%) titer of the PSII complex. In Synechocystis 6803, PsbI-deficient cells appear to be slightly more photosensitive than wild-type cells, suggesting that this protein, while not essential for PSII biogenesis or function, plays a role in the optimization of PSII activity. 相似文献
6.
YS Jung IR Vassiliev F Qiao F Yang DA Bryant JH Golbeck 《Canadian Metallurgical Quarterly》1996,271(49):31135-31144
The FB and FA electron acceptors in Photosystem I (PS I) are [4Fe-4S] clusters ligated by cysteines provided by PsaC. In a previous study (Mehari, T., Qiao, F., Scott, M. P., Nellis, D., Zhao, J., Bryant, D., and Golbeck, J. H. (1995) J. Biol. Chem. 270, 28108-28117), we showed that when cysteines 14 and 51 were replaced with serine or alanine, the free proteins contained a S = 1/2, [4Fe-4S] cluster at the unmodified site and a mixed population of S = 1/2, [3Fe-4S] and S = 3/2, [4Fe-4S] clusters at the modified site. We show here that these mutant PsaC proteins can be rebound to P700-FX cores, resulting in fully functional PS I complexes. The low temperature EPR spectra of the C14XPsaC.PS I complexes (where X = S, A, or G) show the photoreduction of a wild-type FA cluster and a modified FB' cluster, the latter with g values of 2.115, 1.899, and 1.852 and linewidths of 110, 70, and 85 MHz. Since neither alanine nor glycine contains a suitable side group, an external thiolate provided by beta-mercaptoethanol has likely been recruited to supply the requisite ligand to the [4Fe-4S] cluster. The EPR spectrum of the C51SPsaC.PS I complex differs from that of the C51APsaC.PS I or C51GPsaC.PS I complexes by the presence of an additional set of resonances, which may be derived from the serine oxygen-ligated cluster. In all other mutant PS I complexes, a wild-type spin-coupled interaction spectrum appears when FA and FB are simultaneously reduced. Single turnover flash studies indicate approximately 50% efficient electron transfer to FA/FB in the C14SPsaC.PS I, C51SPsaC.PS I, C14GPsaC.PS I, and C51GPsaC.PS I mutants and less than 40% in the C14APsaC.PS I and C51APsaC.PS I mutants, compared with approximately 76% in the PS I core reconstructed with wild-type PsaC. These data are consistent with the measurements of the rates of cytochrome c6-NADP+ reductase activity, indicating lower rates in the alanine mutants. It is proposed that the chemical rescue of a [4Fe-4S] cluster with a recruited external thiolate at the modified site allows the mutant PsaC proteins to rebind to PS I and to function in forward electron transfer. 相似文献
7.
Several random mutations have been generated in the psbA2 gene of Synechocystis sp. PCC 6803 [Narusaka, Y., Murakami, A., Saeki, J., Kobayashi, H., and Satoh, K. (1996) Plant Sci. 115, 261-266]. The phototolerant mutant (I6) carrying all the amino acid substitutions in the lumenal side of D1 protein (S322I, I326F, and F328S) and a site-directed mutant of the same phenotype (NDFS) substituted in the stromal side of the protein (N234D and F260S) were characterized by thermoluminescence measurements. We observed (1) no significant differences in their growth rates at either low or high light irradiance, (2) a downshifted B-band in the NDFS mutant, (3) an upshifted Q-band in the I6 mutant, and (4) a damped period four oscillation of thermoluminescence in the B-band of both mutants. By examining the possible implications of these results on the redox properties of the PS II components in the mutants, we concluded that equilibrium constants for sharing an electron between the primary (QA) and secondary acceptor plastoquinones (QB) are decreased in both mutants. 相似文献
8.
Regions in the large lumenally exposed region (loop E) of CP47 affect properties of the watersplitting system in photosystem II (PS II). To investigate the role of these regions, we developed a method for functional complementation of obligate photoheterotrophic mutants carrying a deletion in one such region. Using an obligate photoheterotrophic mutant that carries a short deletion (delta (D440-P447) in loop E of CP47, completely degenerate sequences of eight codons in length were introduced at the site of the deletion. Transformants that were complemented to photoautotrophic growth were selected, and 20 such mutants were studied. Sequence analysis revealed that, as expected, in each of them CP47 had been restored to its wild-type length. However, none of the amino acid residues in the deleted region were found to be critical for function. A negatively charged residue at position 440 and a positively charged one at position 444 were favored but not required. Photoautotrophic growth of mutants obtained varied from almost normal to significantly impaired. The mutants contained 20-100% of the amount of PS II present in the wild type, with PS II amounts correlating with the initial rates of oxygen evolution. The mutants had a high rate of photoinactivation, and many mutants showed an up to 1000-fold increase in chloride requirement for photoautotrophic growth. These phenotypic effects were a direct consequence of the CP47 mutations and were not caused by altered binding of one of the extrinsic proteins. No particular amino acid residues in positions 440-447 of CP47 were found to be indispensable for photoautotrophic growth, and many amino acid combinations in this region support PS II function. However, the mutagenized region is shown to interact with the oxygen-evolving site of PS II and appears to have a direct role in chloride binding. 相似文献
9.
The salt-sensitive mutant 549 of the cyanobacterium Synechocystis sp. strain PCC 6803 was genetically and physiologically characterized. The mutated site and corresponding wild-type site were cloned and partially sequenced. The genetic analysis revealed that during the mutation about 1.8 kb was deleted from the chromosome of mutant 549. This deletion affected four open reading frames: a gcp gene homolog, the psaFJ genes, and an unknown gene. After construction of mutants with single mutations, only the gcp mutant showed a reduction in salt tolerance comparable to that of the initial mutant, indicating that the deletion of this gene was responsible for the salt sensitivity and that the other genes were of minor importance. Besides the reduced salt tolerance, a remarkable change in pigmentation was observed that became more pronounced in salt-stressed cells. The phycobilipigment content decreased, and that of carotenoids increased. Investigations of changes in the ultrastructure revealed an increase in the amount of characteristic inclusion bodies containing the high-molecular-weight nitrogen storage polymer cyanophycin (polyaspartate and arginine). The salt-induced accumulation of cyanophycin was confirmed by chemical estimations. The putative glycoprotease encoded by the gcp gene might be responsible for the degradation of cyanophycin in Synechocystis. Mutation of this gene leads to nitrogen starvation of the cells, accompanied by characteristic changes in pigmentation, ultrastructure, and salt tolerance level. 相似文献
10.
Part of the chlL gene encoding a component involved in light-independent protochlorophyllide reduction was deleted in wild type and in a photosystem I-less strain of Synechocystis sp. PCC 6803. In resulting mutants, chlorophyll biosynthesis was fully light-dependent. When these mutants were propagated under light-activated heterotrophic growth conditions (in darkness except for 15 min of weak light a day) for several weeks, essentially no chlorophyll was detectable but protochlorophyllide accumulated. Upon return of the chlL- mutant cultures to continuous light, within the first 6 h chlorophyll was synthesized at the expense of protochlorophyllide at a rate independent of the presence of photosystem I. Chlorophyll biosynthesized during this time gave rise to a 685 nm fluorescence emission peak at 77 K in intact cells. This peak most likely originates from a component different from those known to be directly associated with photosystems II and I. Development of 695 and 725 nm peaks (indicative of intact photosystem II and photosystem I, respectively) required longer exposures to light. After 6 h of greening, the rate of chlorophyll synthesis slowed as protochlorophyllide was depleted. In the chlL- strain, greening occurred at the same rate at two different light intensities (5 and 50 microE m-2 s-1), indicating that also at low light intensity the amount of light is not rate-limiting for protochlorophyllide reduction. Thus, in this system the rate of chlorophyll biosynthesis is limited neither by biosynthesis of photosystems nor by the light-dependent protochlorophyllide reduction. We suggest the presence of a chlorophyll-binding 'chelator' protein (with 77 K fluorescence emission at 685 nm) that binds newly synthesized chlorophyll and that provides chlorophyll for newly synthesized photosynthetic reaction centers and antennae. 相似文献
11.
The gene encoding the 12-kDa extrinsic protein of photosystem II from Synechocystis sp. PCC 6803 was cloned based on N-terminal sequence of the mature protein. This gene, named psbU, encodes a polypeptide of 131 residues, the first 36 residues of which were absent in the mature protein and thus served as a transit peptide required for its transport into the thylakoid lumen. A psbU gene deletion mutant grew photoautotrophically in normal BG11 medium at almost the same rate as that of the wild type strain. This mutant, however, grew apparently slower than the wild type did upon depletion of Ca2+ or Cl- from the growth medium. Photosystem II oxygen evolution decreased to 81% in the mutant as compared with that in the wild type, and the thermoluminescence B- and Q-bands shifted to higher temperatures accompanied by an increase in the Q-band intensity. These results indicate that the 12-kDa protein is not essential for oxygen evolution but may play a role in optimizing the ion (Ca2+ and Cl-) environment and maintaining a functional structure of the cyanobacterial oxygen-evolving complex. In addition, a double deletion mutant lacking cytochrome c-550 and the 12-kDa protein grew photoautotrophically with a phenotype identical to that of the single deletion mutant of cytochrome c-550. This supports our previous biochemical results that the 12-kDa protein cannot bind to photosystem II in the absence of cytochrome c-550 (Shen, J.-R., and Inoue, Y. (1993) Biochemistry 32, 1825-1832). 相似文献
12.
M Dalla Chiesa G Friso Z Deák I Vass J Barber PJ Nixon 《Canadian Metallurgical Quarterly》1997,248(3):731-740
Two missense mutants, A263P and S264P, and a deletion mutant des-Ala263, Ser264, have been constructed in the D1 protein of the cyanobacterium Synechocystis sp PCC 6803. All were expected to induce a significant conformational change in the QB-binding region of photosystem II (PSII). Although the des-Ala263, Ser264-D1 mutant accumulated some D1 protein in the thylakoid membrane it was unable to grow photoautotrophically or evolve oxygen. Thermoluminescence and chlorophyll fluorescence studies confirmed that this deletion mutant did not show any functional PSII activity. In contrast, [S264P]D1 was able to grow photoautotrophically and give light-saturated rates of oxygen evolution at 60% of the rate of the wild-type control strain, TC31. The A263P missense mutant was also able to evolve oxygen at 50% of TC31 rates although it did not readily grow photoautotrophically. Thermoluminescence, flash oxygen yield and chlorophyll fluorescence measurements indicated that in both missense mutants electron transfer from QA to QB was significantly impaired in dark adapted cells. However, QA to QB electron transfer could be photoactivated in the mutants by background illumination. Both the A263P and S264P mutants also showed an increase in resistance to the s-triazine family of herbicides although this feature did not hold for the phenolic herbicide, ioxynil. Of particular interest was that the two missense mutants, especially S264P, possessed a slower rate of turnover of the D1 protein compared with TC31 and in vivo contained detectable levels of a 41-kDa adduct consisting of D1 and the alpha subunit of cytochrome b559. When protein synthesis was blocked by the addition of lincomycin, D1 degradation was again slower in S264P than TC31. The results are discussed in terms of structural changes in the QB-binding region which affect herbicide and plastoquinone binding and perturb the normal regulatory factors that control the degradation of the D1 protein and its synchronisation with the synthesis of a replacement D1 protein. 相似文献
13.
L Curatti E Folco P Desplats G Abratti V Limones L Herrera-Estrella G Salerno 《Canadian Metallurgical Quarterly》1998,180(24):6776-6779
The first identification and characterization of a prokaryotic gene (spsA) encoding sucrose-phosphate synthase (SPS) is reported for Synechocystis sp. strain PCC 6803, a unicellular non-nitrogen-fixing cyanobacterium. Comparisons of the deduced amino acid sequence and some relevant biochemical properties of the enzyme with those of plant SPSs revealed important differences in the N-terminal and UDP-glucose binding site regions, substrate specificities, molecular masses, subunit compositions, and regulatory properties. 相似文献
14.
Ferredoxin isolated from the cyanobacterium Synechocystis sp. PCC 6803 has been chemically cross-linked to purified photosystem I from the same organism. The reaction was catalyzed by N-ethyl-3-(3-dimethylaminopropyl)carbodiimide in the presence of N-hydroxysulfosuccinimide. A short reaction time and neutral pH values can be used in the presence of the two reagents, ensuring the integrity of both of the proteins and the iron-sulfur cluster of the ferredoxin. The only covalent complex detected comprised ferredoxin and the photo-system I (PSI)-D subunit, as identified by antibodies probing after electrophoresis. Electron paramagnetic resonance measurements of this covalent complex have shown that the cross-linked ferredoxin was entirely photoreducible by photosystem I and that the molar ratio of ferredoxin to PSI was close to 1. Extensive sequencing of the peptides obtained after proteolysis of the purified cross-linked product led to the identification of a covalent bond between glutamic acid 93 of ferredoxin and lysine 106 of the PSI-D subunit. 相似文献
15.
C Lelong P Sétif H Bottin F André JM Neumann 《Canadian Metallurgical Quarterly》1995,34(44):14462-14473
The [2Fe-2S] ferredoxin extracted from Synechocystis sp. PCC 6803 was studied by 1H and 15N nuclear magnetic resonance. Sequence-specific 1H and 15N assignment of amino acid residues far from the paramagnetic cluster (distance higher than 8 A) was performed. Interresidue NOE constraints have allowed the identification of several secondary structure elements: one beta sheet composed of four beta strands, one alpha helix, and two alpha helix turns. The analysis of interresidue NOEs suggests the existence of a disulfide bridge between the cysteine residues 18 and 85. Such a disulfide bridge has never been observed in plant-type ferredoxins. Structure modeling using the X-PLOR program was performed with or without assuming the existence of a disulfide bridge. As a result, two structure families were obtained with rms deviations of 2.2 A. Due to the lack of NOE connectivities resulting from the paramagnetic effect from the [2Fe-2S] cluster, the structures were not well resolved in the region surrounding the [2Fe-2S] cluster, at both extremities of the alpha helix and the C and N terminus segments. In contrast, when taken separately, the beta sheet and the alpha helix were well defined. This work is the first report of a structure model of a plant-type [2Fe-2S] Fd in solution. 相似文献
16.
The process of ferredoxin reduction by photosystem I has been extensively investigated by flash-absorption spectroscopy in psaD and psaE deleted mutants from Synechocystis sp. PCC 6803. In both mutants, the dissociation constant for the photosystem I/ferredoxin complex at pH 8 is considerably increased as compared to the wild type: approximately 25- and 100-fold increases are found for PsaD-less and PsaE-less photosystem I, respectively. However, at high ferredoxin concentrations, submicrosecond and microsecond kinetics of electron transfer similar to that observed in the wild type are present in both mutants. The presence of these fast kinetic components indicates that the relative positions of ferredoxin and of the terminal photosystem I acceptor are not significantly disturbed by the absence of either PsaD or PsaE. The second-order rate constant of ferredoxin reduction is lowered 10- and 2-fold for PsaD-less and PsaE-less photosystem I, respectively. Assuming a simple binding equilibrium between photosystem I and ferredoxin, PsaD appears to be important for the guiding of ferredoxin to its binding site (main effect on the association rate) whereas PsaE seems to control the photosystem I/ferredoxin complex lifetime (main effect on the dissociation rate). The properties of electron transfer from photosystem I to ferredoxin were also studied at pH 5. 8. In the psaE deleted mutant as in the wild type, the change of pH from 8 to 5.8 induces a 10-fold increase in affinity of ferredoxin for photosystem I. In the absence of PsaD, this pH effect is not observed, in favor of this subunit being mostly responsible for the low pH increased affinity. 相似文献
17.
M Sonoda H Katoh W Vermaas G Schmetterer T Ogawa 《Canadian Metallurgical Quarterly》1998,180(15):3799-3803
The product of pxcA (formerly known as cotA) is involved in light-induced Na+-dependent proton extrusion. In the presence of 2, 5-dimethyl-p-benzoquinone, net proton extrusion by Synechocystis sp. strain PCC6803 ceased after 1 min of illumination and a postillumination influx of protons was observed, suggesting that the PxcA-dependent, light-dependent proton extrusion equilibrates with a light-independent influx of protons. A photosystem I (PS I) deletion mutant extruded a large number of protons in the light. Thus, PS II-dependent electron transfer and proton translocation are major factors in light-driven proton extrusion, presumably mediated by ATP synthesis. Inhibition of CO2 fixation by glyceraldehyde in a cytochrome c oxidase (COX) deletion mutant strongly inhibited the proton extrusion. Leakage of PS II-generated electrons to oxygen via COX appears to be required for proton extrusion when CO2 fixation is inhibited. At pH 8.0, NO3- uptake activity was very low in the pxcA mutant at low [Na+] (approximately 100 microM). At pH 6.5, the pxcA strain did not take up CO2 or NO3- at low [Na+] and showed very low CO2 uptake activity even at 15 mM Na+. A possible role of PxcA-dependent proton exchange in charge and pH homeostasis during uptake of CO2, HCO3-, and NO3- is discussed. 相似文献
18.
Leptolstatin, a product from Streptomyces sp. SAM1595, is a gap phase-specific inhibitor of the mammalian cell cycle. Physico-chemical properties and spectrometric analyses showed that the structure of leptolstatin is (2Z,6E,8Z,12E,14E,22E)-19,24-dihydro xy-8,10,14,16,18,20,22-heptamethyl-17-oxo-2 , 6,8,12,14,22-tetracosahexaen-5-olide. 相似文献
19.
M Amemiya T Someno R Sawa H Naganawa M Ishizuka T Takeuchi 《Canadian Metallurgical Quarterly》1994,47(5):541-544
The structure of cytostatin was determined to be 5,6-dihydro-5-methyl-6-(6-hydroxy,1,5-dimethyl-4-phosphonooxy-7,9, 11-tridecatrienyl)-2H-pyran-2-one sodium salt on the basis of physico-chemical properties and NMR studies. 相似文献