首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Effects of substances which are able to alter brain histamine levels and two histamine H1 receptor agonists were investigated in mice by means of an animal model of depression, the forced swim test. 2. Imipramine (10 and 30 mg kg(-1), i.p.) and amitriptyline (5 and 15 mg kg(-1), i.p.) were used as positive controls. Their effects were not affected by pretreatment with the histamine H3 receptor agonist, (R)-alpha-methylhistamine, at a dose (10 mg kg(-1), i.p.) which did not modify the cumulative time of immobility. 3. The histamine H3 receptor antagonist, thioperamide (2-20 mg kg(-1), s.c.), showed an antidepressant-like effect, with a maximum at the dose of 5 mg kg(-1), which was completely prevented by (R)-alpha-methylhistamine. 4. The histamine-N-methyltransferase inhibitor, metoprine (2-20 mg kg(-1), s.c.), was effective with an ED50 of 4.02 (2.71-5.96) mg kg(-1); its effect was prevented by (R)-alpha-methylhistamine. 5. The histamine precursor, L-histidine (100-1000 mg kg(-1), i.p.), dose-dependently decreased the time of immobility [ED30 587 (499-712) mg kg(-1)]. The effect of 500 mg kg(-1) L-histidine was completely prevented by the selective histidine decarboxylase inhibitor, (S)-alpha-fluoromethylhistidine (50 mg kg(-1), i.p.), administered 15 h before. 6. The highly selective histamine H1 receptor agonist, 2-(3-trifluoromethylphenyl)histamine (0.3-6.5 microg per mouse, i.c.v.), and the better known H1 agonist, 2-thiazolylethylamine (0.1-1 microg per mouse, i.c.v.), were both dose-dependently effective in decreasing the time of immobility [ED50 3.6 (1.53-8.48) and 1.34 (0.084-21.5) microg per mouse, respectively]. 7. None of the substances tested affected mouse performance in the rota rod test at the doses used in the forced swim test. 8. It was concluded that endogenous histamine reduces the time of immobility in this test, suggesting an antidepressant-like effect, via activation of H1 receptors.  相似文献   

2.
Histamine is a general dilator of rat blood vessels. We investigated the relative contribution of receptor subtypes to the rat mesenteric dilator responses initiated by histamine and related agonists. Histamine initiated dose, and endothelium-dependent, dilation of constricted mesenteric beds with an ED50 of 0.4 +/- 0.1 nmol. The ED50 was increased 10-fold by 0.1 microM chlorpheniramine (a histamine H1-receptor selective antagonist). Histamine H2 receptor blockade with tiotidine (0.1 microM) slightly decreased, while thioperamide (1 microM), a selective histamine H3 receptor antagonist, did not block histamine-induced dilation. Mesenteric bed dilation initiated by histamine H2 receptor selective agonists, amthamine and dimaprit, were antagonized markedly by tiotidine. However, the dilation initiated by the putative histamine H3 receptor selective agonists, R(-)- or S(+)-alpha-methylhistamine and imetit were not affected by thioperamide (1 microM). Histamine H2- and H3-receptor mediated dilator effects were endothelium-independent and were blocked by either excess (80 mM) extracellular K+, or 1 mM tetrabutylammonium (a non-selective K+ channel blocker), as well as by 1 microM dequalinium, a non-peptide blocker of the small conductance Ca2+-activated (SKCa) K+ channels. We conclude that (i) histamine H1 receptor subtype predominantly mediates endothelium-dependent dilator effect of histamine, and (ii) vascular hyperpolarization through opening of K+ channels (SKCa) mediate the dilator responses to histamine H2 receptor (amthamine and dimaprit) and the putative histamine H3 receptor (R(-)-alpha-methylhistamine and imetit) agonists.  相似文献   

3.
1. Pretreatment of bovine tracheal smooth muscle (BTSM) with histamine (1-100 microM, 1 h) induced a concentration-dependent desensitization of the contractile response to subsequently administered histamine, with a reduction of the maximum response of 72 +/- 8% (n = 5) following pre-exposure to 100 microM histamine. In contrast, concentration-response curves to the muscarinic agonist, methacholine were not affected following histamine pretreatment, indicating a homologous desensitization. Furthermore, concentration-response curves to NaF, a G-protein activator, were not altered following histamine pre-incubation. 2. The histamine H1-receptor (H1R) desensitization could be antagonized by mepyramine (an H1-receptor antagonist, 1 microM) but not by cimetidine (an H2-receptor antagonist, 10 microM), indicating that the desensitization occurred via stimulation of histamine H1-receptors, without evidence for the involvement of histamine H2-receptors. 3. Indomethacin (10 microM) did not block the H1R desensitization, suggesting no involvement of prostaglandins. Furthermore, histamine pre-incubation in calcium free medium still induced a functional uncoupling of H1R. 4. GF 109203X, a protein kinase C (PKC) inhibitor, and H-7, a non-selective kinase inhibitor, did not antagonize the homologous H1R desensitization. 5. The steady-state level of H1R mRNA, assessed by Northern blot analysis, was not affected by prolonged histamine exposure (100 microM, 0.5, 1, 2, 4, 16 and 24 h). 6. These results suggest that histamine induces desensitization of the H1R at the level of the receptor protein, which involves a mechanism independent of PKC, PKA, PKG and calcium influx, suggesting the involvement of a receptor-specific kinase.  相似文献   

4.
Experiments were performed to characterize the pharmacology of Sch 50971 ((+)-trans-4-(4(R)-methyl-3(R)-pyrolidinyl)-1H-imidazole dihydrochloride, CAS 167610-28-8), a novel histamine H3 receptor agonist. The activity of Sch 50971 was compared with that of (R)-alpha-methylhistamine (CAS 75614-87-8), a potent and moderately selective agonist of histamine H3 receptors, in a series of in vitro and in vivo assays. Sch 50971 is a high affinity, selective H3 receptor agonist in vitro and in vivo. Sch 50971 inhibits [3H]-N-alpha-methylhistamine (CAS 673-50-7) binding to the histamine H3 receptor in human brain (Ki = 5.0 nmol/l) and guinea pig brain (Ki = 2.5 nmol/l). Sch 50971 also inhibits electric field stimulated guinea pig ileum contractions (pD2 = 7.47) and decreases [3H]-norepinephrine (CAS 51-41-2) release (pD2 = 7.48) from guinea pig pulmonary artery by activation of presynaptic inhibitory H3 receptors. The in vitro effects of Sch 50971 are antagonized by low concentrations of a selective H3 antagonist, thioperamide (CAS 106243-16-7). Sch 50971 has low affinity (IC50's > 10 mumol/l) for histamine H1, dopamine D1 and D2, serotonin 5-HT2 and muscarinic cholinergic receptors. It also does not exhibit histamine H2-antagonist activity. In guinea pigs and cats, Sch 50971 exhibits in vivo H3 agonist activity. Sch 50971 inhibits sympathetic hypertension evoked by stimulation of the medulla oblongata in anesthetized guinea pigs (ED30 = 0.3 mg/kg i.v., ED30 = 1.0 mg/kg i.d.). Sch 50971 also inhibits the effects of sympathetic nerve stimulation on nasal resistance in cats. In these assays, Sch 50971 exhibits an efficacy and potency comparable to H3-agonist (R)-alpha-methylhistamine. However, under in vivo conditions, Sch 50971 does not exhibit histamine H1-mediated responses that are seen with (R)-alpha-methylhistamine at doses close to those that produce H3 effects. Therefore, Sch 50971 is a novel, potent and selective agonist of histamine H3 receptors with an improved in vitro and in vivo receptor profile selectivity compared with (R)-alpha-methylhistamine.  相似文献   

5.
The aim of this study was to investigate the possible involvement of the histamine H3 receptor in control of exocrine pancreatic secretion from the guinea-pig. In in vitro experiments, the H3 receptor agonist (R)-alpha-methylhistamine (0.01-10 microM) elicited a concentration-dependent decrease in the release of alpha-amylase. (R)-alpha-Methylhistamine concentrations above 10 microM evoked a concentration-dependent increase in alpha-amylase secretion. Application of mepyramine (1 microM) partially blocked this increase. The H3 receptor antagonist thioperanide (1 microM) blocked the effects of (R)-alpha-methylhistamine below 10 microM. Histamine and (R)-alpha-methylhistamine attenuated both protein release elicited during electrical-field stimulation and the release of tritiated choline, and these effects were reversed by thioperamide. In an in vivo study, (R)-alpha-methylhistamine increased juice secretion and total protein content of the juice by 40%. Histamine H1 and H2 receptor antagonists blocked this increase and uncovered an attenuation of the secretory parameters (juice flow 28%, total protein content 44%). This attenuation was blocked by thioperamide. These observations suggest that stimulation of the histamine H3 receptor in the pancreas results in a decreased fluid and enzyme release by inhibition of acetylcholine release from intrinsic pancreatic nerves.  相似文献   

6.
Based on structural comparison with other biogenic amine receptors and the histamine H2 receptor, it has been suggested that in the human histamine H1 receptor, Asp107, Thr194, and Asn198 are the residues involved in binding of histamine. We therefore used site-directed mutagenesis to investigate the roles of these three amino acid residues. Asp107 was essential for both agonist and antagonist binding. Asn198 was necessary for agonist but not for antagonist binding. Thr194 was not important for either type of binding. A good correlation was found between agonist binding and receptor activation for all the wild-type and mutant receptors. The results show that the histamine H1 receptor recognizes and is activated by histamine through the interactions of Asp107 and the amino group, and Asn198 and the imidazole ring.  相似文献   

7.
The changes of the histamine H3 and dopamine D1 or D2 receptor binding sites induced by quinolinic acid treatment were studied in order to discriminate the comparative distribution. This treatment resulted in similar decreases in histamine H3 and dopamine D1 receptor binding sites in the striatum and ipsilateral substantia nigra. Dopamine D2 receptor binding sites were relatively well conserved, whereas H3 receptors decreased considerably. These results suggest that histamine H3 and dopamine D1 receptor binding sites are localized on the striatonigral projection neurones which are together sensitive to quinolinic acid, and that the distributional compartment of dopamine D2 receptor binding sites is quite different from those of histamine H3 and dopamine D1 receptors.  相似文献   

8.
We studied several histamine homologues as potential ligands for the histamine H3 receptor in two binding assays ([125l]iodophenpropit and N alpha-[3H]methylhistamine binding to rat brain cortex membranes) and two functional H3 receptor models (inhibition of the neurogenic contraction in the guinea pig jejunum and of [3H]noradrenaline release in mouse brain cortex slices). The histamine homologues acted all as competitive H3 antagonists at the guinea pig jejunum. The potency in this model and/or the affinity for N alpha-[3H]methylhistamine binding was higher for the butylene (pA2 = 7.7; pKi = 9.4) and pentylene homologue (impentamine, pA2 = 8.4; pKi = 9.1) than for the propylene, hexylene and octylene homologues (pA2 = 5.9-7.8; pKi = 6.1-7.6). In the mouse brain cortex the propylene, butylene and pentylene homologues acted as partial agonists (alpha = 0.3-0.6) and the hexylene and octylene homologues acted as antagonists. [125I]Iodophenpropit binding was displaced monophasically by the propylene, hexylene and octylene homologues and biphasically by the butylene and pentylene homologues. Biphasic displacement curves were converted to monophasic ones by 10 microM guanosine-5'-O-(3-thiotriphosphate. In conclusion, the homologue of histamine with five methylene groups is a more potent H3 receptor antagonist in the guinea pig jejunum than the other homologues tested. Furthermore, the propylene, butylene and pentylene homologues can discriminate between the two functional H3 receptor models in the guinea pig jejunum and mouse brain. These data are discussed in relation to the efficiency of receptor coupling and receptor heterogeneity.  相似文献   

9.
Histamine is considered one of the important mediators of immediate hypersensitivity and inflammation, and acts via G protein-coupled receptors. Here, we report that histamine may affect antigen receptor-mediated immune responses of T and B cells via a signal(s) from histamine H1 receptors (H1Rs). Histamine exhibited enhancing effects on the in vitro proliferative responses of anti-CD3epsilon- or anti-IgM-stimulated spleen T and B cells, respectively, at the culture condition that the fetal calf serum was dialyzed before culture and c-kit-positive cells were depleted from the spleen cells. In studies of histamine H1R knockout mice, H1R-deficient T cells had low proliferative responses to anti-CD3epsilon cross-linking or antigen stimulation in vitro. B cells from H1R-deficient mice were also affected, demonstrating low proliferative responses to B cell receptor cross-linking. Antibody production against trinitrophenyl-Ficoll was reduced in H1R-deficient mice. Other aspects of T and B cell function were normal in the H1R knockout mice. H1R-deficient T and B cells showed normal responses upon stimulation with interleukin (IL)-2, IL-4, CD40 ligand, CD40 ligand plus IL-4, and lipopolysaccharide. Collectively, these results imply that the signal generated by histamine through H1R augments antigen receptor-mediated immune responses, suggesting cross-talk between G protein-coupled receptors and antigen receptor-mediated signaling.  相似文献   

10.
The effects of (R)alpha-methylhistamine and N alpha-methylhistamine on intestinal transit were examined in mice. The passage of a charcoal meal in the gastrointestinal tract was dose dependently inhibited by N alpha-methylhistamine (1-20 mg/kg i.p.), but not by a selective H3 receptor agonist (R)alpha-methyl-histamine (1-50 mg/kg i.p.). The inhibitory effect of N alpha-methylhistamine (20 mg/kg) was attenuated by pretreatment with H1 receptor antagonists (mepyramine 5 mg/kg i.p. or 5 micrograms i.c.v. and triprolidine 5 mg/kg i.p.), but not by cimetidine (10 mg/kg i.p.), zolantidine (5 mg/kg i.p.), a brain-penetrating H2 receptor antagonist, or thioperamide (5 mg/kg i.p.), a selective H3 receptor antagonist. The effect of N alpha-methylhistamine was also attenuated by combined treatment with phentolamine and propranolol (5 and 15 mg/kg s.c., respectively) and by pretreatment with 6-hydroxydopamine (20 mg/kg i.p., 2 days before). N alpha-Methylhistamine markedly decreased histamine turnover in the mouse brain. These findings suggest that intestinal transit is inhibited by N alpha-methylhistamine via stimulation of central H1 but not H3 receptors and that stimulation of the sympathetic system is involved in this effect.  相似文献   

11.
Receptor sites for neurotransmitters may be spatially oriented within cerebral vascular walls. The direction from which neurohumoral stimuli arise (e.g., perivascular or intravascular) and the location and type of receptor activated may therefore determine the nature of vascular response. I review a series of studies that examined cerebrovascular responses to histamine and suggest that histamine receptors are differentially and spatially organized in two profiles within the cerebral circulation. A transmural distribution is suggested from the following results: increases in permeability of the blood-brain barrier (endothelial cells) to intra-arterial infusion of histamine were mediated by H2-receptors; increases in blood flow to intra-arterial infusion of histamine occurred only after the blood-brain barrier was disrupted and were the result of stimulation of both H1- and H2-receptors. These responses probably occur within inner layers of arterial smooth muscle; dilatation of pial arterioles to local microapplication of histamine and its receptor agonists indicates that H2-receptors are the predominant type in outer layers of arterial smooth muscle. A segmental profile of histamine receptors within the cerebrovascular bed is suggested as follows: since both H1- and H2-receptors could mediate dilatation of arterioles and arteries, it may be concluded that both types of receptor are present in resistance vessels; in the capillary bed, H2-receptors are the predominant type; capacitance vessels (pial veins) did not respond to perivascular application of histamine or its agonists. These studies suggest that receptors for histamine may be sparsely populated or absent in cerebral venous smooth muscle.  相似文献   

12.
In cultured human ciliary muscle cells we previously showed that histamine, via an H1 receptor, stimulates the production of inositol phosphates and mobilization of intracellular calcium. We further investigated in this study whether histamine would cause contraction of human ciliary muscle cells. Photomicrographs were taken of the ciliary muscle cells before and after exposure to histamine. Cross sectional surface area of the cells was quantified using image analysis software. A decrease in cross sectional surface area was interpreted as an indication of cell contraction. The results of this study indicated that histamine (10(-6) M-10(-4) M) caused contraction of human ciliary muscle cells in a concentration-dependent fashion. The effect of histamine was mediated by the H1 receptor subtype since the histamine effect was antagonized by 10(-6) M chlorphentramine (an H1 receptor subtype selective antagonist) but not by 10(-6) M cimetidine (H2 antagonist) or thioperamide (H3 antagonist). The phospholipase C (PLC) inhibitor, U73122 (10(-6) M) and the intracellular calcium store depleting agent thapsigargin (10(-6) M) both prevented the histamine induced contraction, demonstrating that the activation of PLC and the intracellular calcium release were the key steps necessary for contraction. Our data indicate that in ciliary muscle cells, histamine, via an H1 receptor, activates PLC and increases intracellular calcium, which subsequently causes contraction of the cells.  相似文献   

13.
14.
Using a microdialysis method and a new high performance liquid chromatography (HPLC)-fluorometric method for the detection of gamma-aminobutyric acid (GABA), we investigated the effect of thioperamide, an H3 receptor antagonist, on the GABA content in the dialysate from the anterior hypothalamic area of rats anesthetized with urethane. The addition of thioperamide to the perfusion fluid increased the release of GABA and histamine. Depleting neuronal histamine with alpha-fluoromethylhistidine, a specific inhibitor of histidine decarboxylase, and the administration of immepip, an H3 agonist, had no effect on basal- and thioperamide-induced GABA release. In addition, an infusion of clobenpropit, the most specific H3 receptor antagonist available, did not alter the basal release of GABA. On the other hand, histamine release was decreased by immepip and increased by thioperamide and clobenpropit. Removing Ca2+ from the perfusion fluid did not alter the effect of thioperamide on the GABA release, whereas that on histamine release was abrogated. These results suggest that the effect of thioperamide on GABA release is not mediated by histamine H3 receptors and that thioperamide acts on the transporter to cause an efflux of GABA from neurons and/or glia. Thioperamide is a popular H3 receptor antagonist which has been used applied to many studies. However, results using this compound should be interpreted in consideration of its effects on GABA release.  相似文献   

15.
BACKGROUND: The histamine H3 receptor has been shown to inhibit pentagastrin-induced gastric acid secretion in dogs. Since pentagastrin releases histamine in dogs, we have now assessed whether the effects of H3-receptor ligands may be indirectly mediated by changes in gastric histamine release. METHODS: Pentagastrin infusions (1 or 6 micrograms/kg/h), alone or together with the H3-receptor agonist (R) alpha-methylhistamine (1.2 mumol/kg/h) or the antagonist thioperamide (0.1 mumol/kg/h), were performed in dogs. One group (anaesthetized) was used for enzyme immunoassays of plasma histamine and, when required. (R) alpha-methylhistamine in the gastrosplenic vein, and another group (non-anaesthetized) for measurement of gastric acid secretion. RESULTS: Histamine levels were increased five- and eight-fold after 1 and 6 micrograms/kg/h pentagastrin, respectively, whereas acid output was nearly maximal at the lower dosage. (R) alpha-methylhistamine, at a plasma concentration of 0.15 microM, inhibited histamine release by 78% (P < 0.007) and 37% (not significant) and the total acid output by 44% (P < 0.05) and 19% (not significant) after infusion of 1 and 6 micrograms/kg/h pentagastrin, respectively. Thioperamide, together with pentagastrin in low dose, significantly increased histamine release by 212% (P < 0.05), whereas acid output increased by 34% (not significant). CONCLUSIONS: The histamine H3 receptor mediates a negative feedback control of pentagastrin-induced release of gastric histamine. It is tonically activated by endogenous histamine after pentagastrin in low dosage. The control of acid secretion by the H3 receptor seems to involve modulation of endogenous histamine release, possibly by means of enterochromaffin-like cells.  相似文献   

16.
In several cell systems histamine has been shown to stimulate both adenylyl cyclase and phospholipase C through activation of a G protein-coupled H2 receptor. To analyze the bifurcating signal emanating from the activated H2 receptor and to identify the G proteins involved, H1 and H2 histamine receptors were functionally expressed in baculovirus-infected insect cells. Histamine challenge lead to concentration-dependent cAMP formation and Ca2+ mobilization in Sf9 cells infected with a virus encoding the H2 receptor, whereas H1 receptor stimulation only resulted in pronounced phospholipase C activation. To analyze the G protein coupling pattern of histamine receptors, activated G proteins were labeled with [alpha-32P]GTP azidoanilide and identified by selective immunoprecipitation. In insect cell membranes expressing H1 histamine receptors, histamine led to incorporation of the label into alpha q-like proteins, whereas activation of the H2 receptor resulted in labeling of alpha q- and alpha s-like G protein alpha-subunits. In COS cells transfected with H2 receptor complementary DNA, histamine caused concentration-dependent accumulation of cAMP and inositol phosphates; the latter effect was insensitive to pertussis toxin treatment. Histamine stimulation led to a pronounced increase in inositol phosphate production when complementary DNAs coding for alpha q, alpha 11, alpha 14, or alpha 15 G protein alpha-subunits were cotransfected. This increase was specific for Gq family members, as overexpression of alpha 12 or alpha s did not enhance histamine-stimulated phospholipase C activation. In membranes of guinea pig heart, addition of [alpha-32P]GTP azidoanilide resulted in labeling of alpha q and alpha 11 via the activated H1 and also via H2 receptors. These data demonstrate that dual signaling of the activated H2 histamine receptor is mediated by coupling of the receptor to Gs and Gq family members.  相似文献   

17.
1. Histamine acted on H2 receptors in rat parotid tissues and induced the amylase secretion. Immunoblot analysis by using anti-H2 receptor protein antiserum demonstrated that histamine induced the increase and decrease in the amounts of H2 receptor proteins in basolateral and intracellular membranes, respectively. 2. Short-term treatment with histamine resulted in decreases in amylase secretion, the density of H2 receptors and their affinity for the agonists during further incubation with histamine, but showed an unaltered secretory response to isoproterenol, indicating that the histamine-induced desensitization was confined to H2 receptors. 3. This treatment triggered a 20% decrease in the histamine-stimulated adenylate cyclase activity and a 40% decrease in the phosphorylation level of Gi2alpha protein in the tissues, resulting in an increase in pertussis toxin (IAP)-catalyzed ADP-ribosylation of the protein. An enhancement of cholera toxin-catalyzed ADP-ribosylation of Gs protein was observed only during the first incubation with histamine. 4. This treatment triggered a 30% decrease and a 60% increase in the histamine-stimulated activities of protein kinase A and protein phosphatase 2A in the tissues, respectively. 5. Pretreatment with okadaic acid completely blocked the histamine-induced decrease in amylase secretion and increase in IAP-catalyzed ADP-ribosylation of Gi protein. The levels of Gi2alpha and Gs alpha proteins in the tissues were not modified by histamine treatment and the level of Gi2alpha protein was not affected by pretreatment with okadaic acid, as assessed by immunoblot analyses with anti-Gi2alpha and anti-Gs alpha protein antiserum. 6. The regulation of Gi2alpha protein phosphorylation in parotid tissues plays an important role in the histamine-induced desensitization of amylase secretion.  相似文献   

18.
A genomic DNA fragment encoding a G protein-coupled seven-transmembrane receptor was isolated from Medaka fish, Oryzias latipes. The encoded protein is similar in sequence to other receptors including catecholamine, histamine and serotonin receptors. However, the similarity is much lower than those among members of these receptor subfamilies, thus suggesting this seven-transmembrane receptor to be an orphan receptor whose ligand has not yet been identified. Genomic Southern blot analysis suggested that the fish genome contains additional receptor genes related to the isolated gene, indicating that this novel receptor, possibly with its related receptors, might constitute a novel subfamily of the seven-transmembrane receptor superfamily.  相似文献   

19.
Effects of intracerebroventricular injection of histamine and its related compounds on rectal temperature were studied in mice. Histamine (0.1-1.0 mu g) and histidine (500-1,000 mg/kg) caused a dose-related hypothermia. H1 agonist, 2-methylhistamine and 2-thiazolylethylamine also displayed a dose-dependent hypothermia. In addition, H2 agonists, 4-methylhistamine and dimaprit elicited a decrease in body temperature. Preinjection of not only H1-antagonists (diphenhydramine and chlorpheniramine) but also H2 antagonists (cimetidine and ranitidine) abolished histamine-induced hypothermia. Either intracerebroventricular or intraperitoneal injection of thioperamide, a histamine H3 antagonist, showed hypothermia. The hypothermic effect produced by intracerebroventricular injection of thioperamide was significantly blocked by (R)-alpha-methylhistamine, a selective H3 agonist. In addition, the effect induced by thioperamide was inhibited by H1 and H2 antagonists, indicating that the H3 receptor also participates in histamine-induced hypothermia.  相似文献   

20.
The binding of [123I]AM251 (a radioiodinated analog of the cannabinoid CB1 receptor antagonist SR141716A) was compared to that of [3H]CP 55,940 in mouse and rat brain preparations. Scatchard analysis of the binding of [123I]AM251 and [3H]CP 55,940 to membranes prepared from mouse cerebellum, striatum and hippocampus yielded similar Bmax values (15-41 pmol/g wet wt tissue). Kd values were lower for [123I]AM251 (0.23-0.62 nM) than for [3H]CP 55,940 (1.3-4 nM). CP 55,940 and SR141716A increased dissociation of [123I]AM251 from binding sites in mouse cerebellar homogenates to a similar extent. The structurally dissimilar cannabinoid receptor ligands THC, methanandamide, WIN 55, 212-2, CP 55,940 and SR141716A were each able to fully compete with binding of both [123I]AM251 and [3H]CP 55,940 in mouse cerebellum. In vitro autoradiography demonstrated that the distribution of binding sites for [123I]AM251 in rat brain was very similar to published distributions of binding sites for [3H]CP 55,940. Together, these observations suggest that AM251 binds to the same site (the cannabinoid CB1 receptor) in rodent brains as CP 55,940. However, the binding site domains which interact with AM251 and CP 55,940 may not be identical, since IC50 values for cannabinoid receptor ligands depended on whether [123I]AM251 or [3H]CP 55,940 was used as radioligand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号