首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 685 毫秒
1.
Transient cerebral ischemia (5 min) releases unesterified fatty acids from membrane phospholipids, increasing brain concentrations of fatty acids for up to 1 h following reperfusion. To understand the reported anti-ischemic effect of Ginkgo biloba extract (EGb 761), we monitored its effect on brain fatty acid reincorporation in a gerbil-stroke model. Both common carotid arteries in awake gerbils were occluded for 5 min, followed by 5 min of reperfusion. Animals were infused intravenously with labeled arachidonic (AA) or palmitic acid (Pam), and rates of incorporation of unlabeled fatty acid from the brian acyl-CoA pool were calculated by the model of Robinson et al. (1992), using quantitative autoradiography and biochemical analysis of brain acyl-CoA. Animals were treated for 14 d with 50 or 150 mg/kg/d EGb 761 or vehicle. Ischemia-reperfusion had no effect on the rate of unlabeled Pam incorporation into brain phospholipids from palmitoyl-CoA; this rate also was unaffected by EGb 761. In contrast, ischemia-reperfusion increased the rate of incorporation of unlabeled AA from brain arachidonoyl-CoA by a factor of 2.3-3.3 compared with the control rate; this factor was further augmented to 3.6-5.0 by pretreatment with EGb 761. There is selective reincorporation of AA compared with Pam into brain phospholipids following ischemia. EGb 761 further accelerates AA reincorporation, potentially reducing neurotoxic effects of prolonged exposure of brain to high concentrations of AA and its metabolites.  相似文献   

2.
Regional cerebral 'incorporation coefficients' k* of each of 3 labeled long-chain fatty acids -[9,10-3H]palmitate ([3H]PA), [1-14C]arachidonate ([14C]AA) and [1-14C]docosahexaenoate ([14C]DHA)-were measured using quantitative autoradiography in 11 bilateral brain visual areas of 3.5-month-old awake, hooded, Long-Evans rats, and were compared with regional cerebral metabolic rates for glucose (rCMRglc). The rats, which had undergone unilateral orbital enucleation at 15 days of age, were studied either in the dark with eyelids of the intact eye sutured, or when stimulated in a light box with the intact eye open. rCMRglc did not differ between homologous contralateral and ipsilateral visual areas in the dark or during stimulation, but was elevated bilaterally by 25% or more in many visual areas during stimulation compared with dark. Contralateral compared with ipsilateral k* was lower for each fatty acid tracer in superficial gray of the superior colliculus (in dark and during stimulation) and dorsal nucleus of lateral geniculate body (during stimulation). In the dark, k* for [3H]PA was correlated significantly with rCMRglc for the 22 visual areas studied, whereas during stimulation k* for [14C]AA was correlated with rCMRglc. These results suggest that central neuroplastic changes following chronic unilateral enucleation are accompanied by reduced incorporation of [3H]PA, [14C]AA and [14C]DHA into contralateral brain ares that normally receive crossed retinofugal fibers, and by symmetry of rCMRglc in the dark but increased bilateral symmetrical responsiveness of rCMRglc to visual stimulation of the intact eye.  相似文献   

3.
Parenterally administered domoic acid, a structural analog of the excitatory amino acids glutamic acid and kainic acid, has specific effects on brain histology in rats, as measured using different anatomic markers. Domoic acid-induced convulsions affects limbic structures such as hippocampus and entorhinal cortex, and different anatomic markers can detect these neurotoxic effects to varying degrees. Here we report effects of domoic acid administration on quantitative indicators of brain metabolism and gliosis. Domoic acid, 2.25 mg/kg i.p., caused stereotyped behavior and convulsions in approximately 60% of rats which received it. Six to eight days after domoic acid or vehicle administration, the animals were processed to measure regional brain incorporation of the long-chain fatty acids [1-(14)C]arachidonic acid ([14C]AA) and [9,10-(3)H]palmitic acid ([3H]PA), or regional cerebral glucose utilization (rCMRglc) using 2-[1-(14)C]deoxy-D-glucose, by quantitative autoradiography. Others rats were processed to measure brain glial fibrillary acidic protein (GFAP) by enzyme-linked immunosorbent assay. Domoic acid increased GFAP in the anterior portion of cerebral cortex, the caudate putamen and thalamus compared with vehicle. However, in rats that convulsed after domoic acid GFAP was significantly increased throughout the cerebral cortex, as well as in the hippocampus, septum, caudate putamen, and thalamus. Domoic acid, in the absence of convulsions, decreased relative [14C]AA incorporation in the claustrum and pyramidal cell layer of the hippocampus compared with vehicle-injected controls. In the presence of convulsions, relative [14C]AA incorporation was decreased in hippocampus regions CA1 and CA2. Uptake of [3H]PA into brain was unaffected. Relative rCMRglc decreased in entorhinal cortex following domoic acid administration with or without convulsions. These results suggest that acute domoic acid exposure affects discrete brain circuits by inducing convulsions, and that domoic acid-induced convulsions cause chronic effects on brain function that are reflected in altered fatty acid metabolism and gliosis.  相似文献   

4.
Recent work in our lab has shown that the chemoprotective fatty acid, conjugated linoleic acid (CLA), inhibits phorbol ester skin tumor promotion in mice. Because little is known about the deposition of CLA into tissues as well as its biological activity, this study compared the incorporation and biological activity of CLA to linoleic acid (LA; 18:2, c9,c12) and arachidonic acid (AA; 20:4 c5,c8,c11,c14) in cultured keratinocytes. When keratinocytes (HEL-30) were grown in media containing 14C-CLA for various periods, more than 50% of the 14C-CLA was incorporated into cellular lipids by 9 h. The distribution of CLA in phospholipid classes was similar to LA, Approximately 50% of 14C-LA and 14C-CLA were incorporated into phosphatidylcholine (PC), while the remainder was taken up by phosphatidylethanolamine (PE) and phosphatidylserine/phosphatidylinositol (PS/PI). In contrast, 14C-AA was more equitably distributed into PC, PE, or PS/PI (27, 30, or 38%, respectively). When keratinocytes were prelabeled with radiolabeled fatty acids, phorbol ester-induced release of 14C-CLA was 1.5 times higher than 14C-LA and 14C-AA. However, 14C-prostaglandin E (PGE) release in 14C-CLA prelabeled cultures was 6 and 13 times lower than cultures treated with 14C-LA and 14C-AA, respectively. Moreover, the ability of non-radiolabeled CLA to support ornithine decarboxylase activity, a hallmark event of tumor promotion, was significantly lower than in LA- and AA-treated cultures. These studies suggest that CLA inhibits skin tumor promotion, in part, through a PGE-dependent mechanism.  相似文献   

5.
1. The distribution of radioactivity among lipid classes of myelin and other subcellular brain fractions of young rats (18-21 days) was determined after in vivo injection of (3-(14)C-labelled ketone bodies, [U-(14)C] glucose or [2-(14)C] glucose. 2. The incorporation ratios (sterol/fatty acids) were 0.67, 1.48, 0.25, 0.62 and 0.54 for whole brain, myelin, mitochondria, microsomes and synaptosomes, respectively, with (3-(14)C)-labelled ketone bodies as substrate and 0.37, 0.89, 0.19, 0.34 and 0.29 with [U-(14)C] glucose as substrate. These data show that, both in whole brain and in subcellular brain fractions, acetyl groups derived from ketone bodies are used for sterol synthesis to a large extent than acetyl groups originating from glucose. 3. The specific radioactivity of cholesterol is much higher in myelin than in whole brain or in the other brain fractions, particularly after administration of labelled ketone bodies as substrate. 4. The incorporation patterns of acetoacetate and D-3-hydroxybutyrate were very similar, indicating that both ketone bodies contribute acetyl groups for lipid synthesis via the same metabolic route. 5. Our data suggest that a direct metabolic path from ketone bodies towards cholesterol exists - possibly via acetoacetyl-CoA formation in the cytosol of brain cells - and that this process is most active in oligodendrocytes.  相似文献   

6.
To study the effects of medium-chain triacylglycerols (MCT) on maternal lipid metabolism and pup growth, MCT (200 g/kg) were incorporated into a commercial chow diet and fed to lactating rats for 8-10 d. The results were compared with similar diets containing sunflower oil (polyunsaturated fatty acids; PUFA), tristearin (saturated fatty acid) or triolein (monounsaturated fatty acid). There was decreased food and energy intake with the MCT diet and this was accompanied by decreased (35%) pup growth. All the high-fat diets inhibited lipogenesis in vivo in the lactating mammary gland, the order of effectiveness being PUFA > triolein > tristearin > MCT. Only the MCT diet increased the rate of hepatic lipogenesis (180%). Experiments feeding an MCT meal containing [1-14C]octanoate indicated that very little (3-4%) of the C was present in mammary gland lipid, unlike the findings with [1-14C]triolein meal (40%). The major portion (65%) of the absorbed [1-14C]octanoate was oxidized to 14CO2. There was no evidence for adaptation of the mammary gland to increased dietary lipid uptake on the triolein or MCT diets. It is concluded that the decreased pup growth on the MCT diet is due in part to the decreased energy intake and to the inability of dietary medium-chain fatty acids to provide substrates for milk lipid synthesis.  相似文献   

7.
Lipid metabolism has been considered recently as a novel target for cancer therapy. In this field, lithium gamma-linolenate (LiGLA) is a promising experimental compound for use in the treatment of human tumours. In vivo and in vitro studies allowed us to assess the metabolism of radiolabelled LiGLA by tumour tissue and different organs of the host. In vitro studies demonstrated that human pancreatic (AsPC-1), prostatic (PC-3) and mammary carcinoma (ZR-75-1) cells were capable of elongating GLA from LiGLA to dihomo-gamma-linolenic acid (DGLA) and further desaturating it to arachidonic acid (AA). AsPC-1 cells showed the lowest delta5-desaturase activity on DGLA. In the in vivo studies, nude mice bearing the human carcinomas were given Li[1-(14)C]GLA (2.5 mg kg(-1)) by intravenous injection for 30 min. Mice were either sacrificed after infusion or left for up to 96 h recovery before sacrifice. In general, the organs showed a maximum uptake of radioactivity 30 min after the infusion started (t = 0). Thereafter, in major organs the percentage of injected radioactivity per g of tissue declined below 1% 96 h after infusion. In kidney, brain, testes/ovaries and all three tumour tissues, labelling remained constant throughout the experiment. The ratio of radioactivity in liver to tumour tissues ranged between 16- and 24-fold at t = 0 and between 3.1- and 3.7-fold at 96 h. All tissues showed a progressive increase in the proportion of radioactivity associated with AA with a concomitant decrease in radiolabelled GLA as the time after infusion increased. DGLA declined rapidly in liver and plasma, but at a much slower rate in brain and malignant tissue. Seventy-two hours after the infusion, GLA was only detected in plasma and tumour tissue. The sum of GLA + DGLA varied among tumour tissues, but it remained 2-4 times higher than in liver and plasma. In brain, DGLA is the major contributor to the sum of these fatty acids. Data showed that cytotoxic GLA and DGLA, the latter provided either by the host or by endogenous synthesis, remained in human tumours for at least 4 days.  相似文献   

8.
The time course of incorporation of [14C]arachidonic acid and [3H]docosahexaenoic acid into various lipid fractions in placental choriocarcinoma (BeWo) cells was investigated. BeWo cells were found to rapidly incorporate exogenous [14C]arachidonic acid and [3H] docosahexaenoic acid into the total cellular lipid pool. The extent of docosahexaenoic acid esterification was more rapid than for arachidonic acid, although this difference abated with time to leave only a small percentage of the fatty acids in their unesterified form. Furthermore, uptake was found to be saturable. In the cellular lipids these fatty acids were mainly esterified into the phospholipid (PL) and the triacyglycerol (TAG) fractions. Smaller amounts were also detected in the diacylglycerol and cholesterol ester fractions. Almost 60% of the total amount of [3H]Docosahexaenoic acid taken up by the cells was esterified into TAG whereas 37% was in PL fractions. For arachidonic acid the reverse was true, 60% of the total uptake was incorporated into PL fractions whereas less than 35% was in TAG. Marked differences were also found in the distribution of the fatty acids into individual phospholipid classes. The higher incorporation of docosahexaenoic acid and arachidonic acid was found in PC and PE, respectively. The greater cellular uptake of docosahexaenoic acid and its preferential incorporation in TAG suggests that both uptake and transport modes of this fatty acid by the placenta to fetus is different from that of arachidonic acid.  相似文献   

9.
The contribution of synthesis and dietary sequestration to the high arachidonate content of the lone star tick, Amblyomma americanum, salivary glands was investigated by assessing the salivary metabolites of various radiolabeled fatty acid substrates administered to partially fed females. A portion of each of the fatty acids studied was incorporated into the fatty acid moiety of the phospholipid fraction. [14C]acetate was metabolized only into myristic, palmitic, palmitoleic, steric, and oleic acids. [3H]oleic acid, [14C]linoleic acid, [14C]gamma-linolenic acid and [14C]eicosatrienoic acids were incorporated into salivary gland phospholipids but underwent little change including elongation and/or desaturation to arachidonate. Ingested [3H]arachidonic acid was readily taken up by the salivary gland and distributed among the lipid classes in a pattern markedly different from that of the other fatty acids tested. We conclude that ticks are unable to synthesize arachidonic acid for incorporation into the salivary glands, but rather sequester it from the host bloodmeal.  相似文献   

10.
Spinach chloroplasts, isolated by techniques yielding preparations with high O2- evolving activity, showed rates of light-dependent acetate incorporation into lipids 3-4 fold higher than any previously reported. Incorporation rates as high as 500 nmol of acetate/h per mg of chlorophyll were measured in buffered sorbitol solutions containing only NaHCO3 and [1-14C]acetate, and as high as 800 nmol/h per mg of chlorophyll when 0.13 mM-Triton X-100 was also included in the reaction media. The fatty acids synthesized were predominantly oleic (70-80% of the total fatty acid radioactivity) and palmitic (20-25%) with only minor amounts (1-5%) of linoleic acid. Linolenic acid synthesis was not detected in the system in vitro. Free fatty acids accounted for 70-90% of the radioactivity incorporated and the remainder was shared fairly evenly between 1,2-diacylglycerols and polar lipids. Oleic acid constituted 80-90% of the free fatty acids synthesized, but the diacylglycerols and polar lipids contained slightly more palmitic acid than oleic acid. Triton X-100 stimulated the synthesis of diacylglycerols 3-6 fold, but stimulated free fatty acid synthesis only 1-1.5-fold. Added glycerol 1-phosphate stimulated both the synthesis of diacylglycerols and palmitic acid relative to oleic acid, but did not increase acetate incorporation into total chloroplast lipids. CoA and ATP, when added separately, stimulated acetate incorporation into chloroplast lipids to variable extents and had no effect on the types of lipid synthesized, but when added together resulted in 34% of the incorporated acetate appearing in long-chain acyl-CoA. Pyruvate was a much less effective precursor of chloroplast fatty acids than was acetate.  相似文献   

11.
Absorption and distribution of polyunsaturated fatty acids was investigated in rats receiving lysophospholipids per os (30 mg kg-1). Lysophosphatidylcholine (lysoPC) increased [3H]arachidonate absorption and its incorporation into mucosal phosphatidylcholine. Transport of [3H]arachidonate by the phospholipid fraction of lymph lipoproteins and the level of [3H]arachidonate in plasma and liver lipids was also increased by lyso PC. Lysophosphatidylserine also increased [3H]arachidonate absorption but channeled the fatty acids into the aminophospholipid fraction of mucosal phospholipids, thus decreasing its efflux in lymph lipoproteins. As a consequence, lysophosphatidylserine caused [3H]arachidonate accumulation in mucosa. As similar results were obtained with [14C]linoleate, the data suggest that the addition of an appropriate lysophospholipid to the diet may direct absorption and distribution of polyunsaturated fatty acids.  相似文献   

12.
In the vertebrate retina, a number of proteins involved in signal transduction are known to be N-terminal acylated with the unusual 14 carbon fatty acids 14:1n-9 and 14:2n-6. We have explored possible pathways for producing these fatty acids in the frog retina by incubation in vitro with candidate precursor fatty acids bearing radiolabels, including [3H]14:0, [3H]18:1n-9, [3H]18:2n-6, and [3H]18:3n-3. Rod outer segments were prepared from the radiolabeled retinas for analysis of protein-linked fatty acids, and total lipids were extracted from the remaining retinal pellet. Following saponification of extracted lipids, fatty acid phenacyl esters were prepared and analyzed by high pressure liquid chromatography (HPLC) with detection by continuous scintillation counting. Transducin, whose alpha-subunit (Gt alpha) is known to bear N-terminal acyl chains, was extracted from the rod outer segments and subjected to SDS-polyacrylamide gel electrophoresis and fluorography to detect radiolabeled proteins. Gt alpha was also subjected to methanolysis, and the resulting fatty acyl methyl esters were analyzed by HPLC. The identities of HPLC peaks coinciding with unsaturated species of both phenacyl esters and methyl esters were confirmed by reanalyzing them after catalytic hydrogenation. The results showed that 14:1n-9 can be derived in the retina from 18:1n-9 and 14:2n-6 from 18:2n-6, most likely by two rounds of beta-oxidation, but that neither is produced in detectable amounts from 14:0. Retroconversion of unsaturated 18 carbon fatty acids to the corresponding 14 carbon species showed specificity, in that 18:3n-3 was not converted to 14 carbon fatty acids in detectable amounts. Myristic acid (14:0), 14:1n-9, and 14:2n-6 were all incorporated into Gt alpha. A much less efficient incorporation of 18:1n-9 into Gt alpha was also observed, but no radiolabeling of Gt alpha was observed in retinas incubated with 18:3n-3. Thus, retroconversion by limited beta-oxidation of longer chain unsaturated fatty acids appears to be the most likely metabolic source of the unusual fatty acids found on the N termini of signal transducing proteins in the retina.  相似文献   

13.
A mixture of cis-9[1(-14)C] octadecenol and [1(-14)C] docosanol was injected into the brains of 19-day-old rats, and incorporation of radioactivity into brain lipids was determined after 3, 12, and 24 hr. Both alcohols were metabolized by the brain but at different rates; each was oxidized to the corresponding fatty acid, but oleic acid was more readily incorporated into polar lipids. Substantial amounts of radioactivity were incorporated into 18:1 alkyl and alk-1-enyl moieties of the ethanolamine phosphoglycerides and into 18:1 alkyl moieties of the choline phosphoglycerides. Even after the disappearance of the 18:1 alcohol from the substrate mixture (12 hr), the 22:0 alcohol was not used to any measurable extent for alkyl and alk-1-enylglycerol formation.  相似文献   

14.
To investigate the metabolism of glutamate and glutamine in living monkey brain, a system of in vivo 13C magnetic resonance spectroscopy (MRS) using 1H-decoupled 13C spectroscopy combined with monitoring temperature changes in the brain by MR phase mapping was developed. Serial 13C-NMR spectra of the amino acids glutamate and glutamine were acquired non-invasively over 4 h from anesthetized monkey brain after the intravenous administration of [1-13C]glucose (0.5-1.0 g/kg). In the acute hyperammonemic state induced by the administration of ammonium acetate (77 mg/kg bolus), it was observed that 13C incorporation into glutamine-4 was clearly accelerated, without changes of 13C incorporation into glutamate-4. During hyperammonemia, it was shown directly by [2-13C]glucose administration that the anaplerotic pathway for the TCA cycle was also augmented, contributing to the formation of glutamine in the astroglia.  相似文献   

15.
The mechanism of the hypolipidemic effect of n-3 fatty acids was studied using isolated rat hepatocytes maintained in culture. EPA and DHA caused a significant reduction in the incorporation of 3[H]-leucine into apoB associated with the VLDL produced by hepatocytes in culture when compared to that in presence of palmitic acid. Presence of indomethacin, an inhibitor of cyclo-oxygenase reversed the effect of EPA on VLDL synthesis while diethyl carbamazine an inhibitor of lipoxygenase did not show any effect suggesting that the effect of EPA may be mediated through prostaglandins. This was further tested by invivo experiments where animals were fed fish oil containing diet with and without aspirin, which inhibits formation of prostaglandins. The incorporation of 3[H]-leucine into apo B and 14[C]-acetate into cholesterol of VLDL produced by hepatocytes from aspirin treated animals were significantly high. The reversal of the effect of n-3 fatty acids by agents which inhibit the formation of prostaglandin suggests that the n-3 fatty acids may exert their effect on VLDL production by liver cells through prostaglandins.  相似文献   

16.
Mechanisms of decreased insulin responsiveness of large adipocytes   总被引:1,自引:0,他引:1  
We have studied glucose metabolism using large adipocytes isolated from older, fatter rats (greater than 12 months old, greater than 550 g), and smaller cells obtained from younger, leaner animals (4-5 weeks old, 126-160 g). 2-Deoxyglucose uptake was equal in large and small adipocytes, while insulin mediated oxidation of [1(-14)C]glucose was greatly diminished (7-fold) in large cells. Thus, the defect in oxidation of the number one carbon atom of glucose (pentose pathway oxidation) is distal to the 2-deoxyglucose uptake system. However, this intracellular defect is not present in all pathways of glucose oxidation as demonstrated by the finding that [6(-14)C]glucose oxidation was comparable in small and large adipocytes. Thus, the number six carbon atom of glucose is oxidized normally indicating that glycolytic and Krebs cycle activity is intact in the large adipocyte. Furthermore, in large adipocytes conversion of glucose to total lipid was normal in the basal state and moderately decreased at high glucose concentrations in the presence of insulin (up to 35%). When the radioactivity in total lipids was fractionated, a severe decrease in glucose incorporation into fatty acids was found in the large cells. Total glucose uptake was also measured, and found to be 10-50% decreased in large cells, suggesting that the decreases in pentose pathway glucose metabolism and conversion to fatty acids lead to accumulation of free intracellular glucose with glucose efflux and a decrease in net glucose uptake. Comparing the 2-deoxyglucose uptake and glucose oxidation data showed that insulin promotes [6(-14)C]glucose oxidation by stimulating the processes responsible for 2-deoxyglucose uptake whereas insulin promotes [1(-14)C]glucose oxidation both by increasing these processes and by increasing the activity of the C-1 oxidative pathway. In conclusion: 1) the 2-deoxyglucose uptake system of the large adipocyte is basically intact, 2) [1(-14)C]glucose oxidation is markedly decreased in large adipocytes, while [6(-14)C]glucose oxidation is normal, and 3) in comparing small and large adipocytes, it appears that it is the ability of insulin to enhance glucose oxidation via the pentose pathway and to promote glucose incorporation into fatty acids which is most impaired in large adipocytes.  相似文献   

17.
Purified outer membrane of beef liver mitochondria was found to elongate medium chain fatty acyl-CoA primer by the incorporation of [1-14C]acetyl-CoA. This enzymic activity, extracted by Triton X-100, was purified 8-fold by ammonium sulfate fractionation followed by chromatography on a Sephadex column. Purified inner membrane, when processed through an identical purification procedure, yielded a second enzyme system which incorporated [1-14C]acetyl-CoA into long chain fatty acids in the presence of medium chain fatty acyl-CoA primer. This enzyme preparation was about four times as active as the preparation from the outer membrane, and used NADH as the reductant for the synthesis. The molecular weights of the inner and the outer membrane enzyme systems, estimated by gel filtration as well as sucrose density gradient centrifugation, were approx. 57 000 and 126 000, respectively. The partially purified outer membrane enzyme system required NADH and a medium chain acyl-CoA primer for the incorporation of [1-14C]acetyl-CoA into long chain fatty acids. KNC stimulated the reaction. NADPH could substitute for NADH only to a limited extent. Malonyl-CoA was ineffective as a substrate in this reaction. The optimum pH of the reaction was 7.2-7.6 in 0.1 M potassium phosphate buffer. Dithiothreitol, beta-mercaptoethanol, N-ethylmaleimide and high concentrations of ATP and acyl-CoA primer inhibited the reaction. The specificity for the acyl-CoA primer in the reaction was very broad. All the primers tested, C8 to C16, incorporated acetyl-CoA significantly. However, maximum incorporation was observed with dodecanoyl-CoA. Decanoyl-CoA was the best primer for the enzyme system isolated from the inner membrane. About 42% of the radioactivity in the fatty acids synthesized by the outer membrane enzyme system, from myristoyl-CoA and [1-C14]acetyl-CoA, was in palmitic acid. Of the remaining activity, 41% was in stearic acid and about 38% in longer-chain acids. Hence, the elongation of the primer fatty acid by one C2 unit appeared to be the predominant process in this synthesis. In the elongation of myristoyl-C0A by the inner membrane enzyme system, palmitic acid which constituted nearly 78% of the fatty acids synthesized, was the primary product.  相似文献   

18.
The effect of ethanol (ETOH) on the incorporation of [14C]oleic acid (18:1) into lipid in human monocyte-like U937 cells was investigated. With increasing time of exposure to ETOH, the percentage of the label distributed into neutral lipid (NL) declined from 35 per cent (3 h) to 10 per cent (24 h) accompanied by increased incorporation into phospholipid (PL). [14C] 18:1 was preferentially incorporated into triglyceride (TG) and phosphatidylcholine (PC), comprising over 65 per cent and 50 per cent of the label associated with NL and PL, respectively. Low concentrations of ETOH (< or = 1.0 per cent; v/v) had no effect. At concentrations greater than 1.5 per cent, there was enhanced incorporation into TG and diacylglycerol (DAG) in a 24-h incubation period, while at 16 h the label in phosphatidylethanolamine (PE) was decreased. The effect of ETOH on the CDP-choline or ethanolamine pathway was examined by monitoring the incorporation of [3H]choline or [14C]ethanolamine into PC or PE, respectively. At low concentrations ETOH had no effect on either choline uptake or the incorporation into PC. Higher concentrations (> or = 1.5 per cent) for 3 and 6 h resulted in a slightly decreased choline uptake, and the reduction (40-50 per cent) of incorporation into PC suggests that the CDP-choline pathway was inhibited. There was a similar inhibition of the incorporation of [14C]ethanolamine into PE. When the cells were incubated for 3 h in the presence of 2 per cent ETOH and with labelled 18:1 and PL-base, the ratios of incorporation (base/18:1) into PC and PE fractions decreased, indicating that the major inhibition lay in blockage of the availability of the base moiety for PL formation. Analysis of the distribution of the label into metabolites revealed that ETOH inhibited the conversion of [14C]ethanolamine into [14C]phosphorylethanolamine. The reduction in incorporation was not due to the enhanced breakdown of base-labelled PL. Our results indicate that ETOH has an inhibitory effect on the CDP-choline or ethanolamine pathway.  相似文献   

19.
Freshly isolated rat hepatocytes were incubated for 20 and 60 min with [U-14C]glycerol and unlabeled palmitic (16:0), oleic (18:1), or arachidonic (20:4) acid, added as albumin complex in 10% ethanol. Each fatty acid increased glycerol incorporation into total lipids by a factor of 8-10 over control, whereas ethanol alone (final concentration 100 mM) yielded a threefold increase of glycerol uptake. Glycerol incorporation stopped after 20 min and cellular acyl turnover continued in the absence of useable labeled substrate. In each case, radioactivity recovered in hepatocyte lipids was present primarily in triacylglycerol (37-64%), phosphatidylcholine (22-37%), and phosphatidylethanolamine (10-22%). Separation by high-performance liquid chromatography of the diacylglycerol dinitrobenzoates derived from phosphatidylcholine showed that the molecular species had drastically different labeling patterns in the presence of the exogenous fatty acids, whereas the pattern obtained in the presence of ethanol alone was virtually the same as that for the control incubations. The labeling patterns indicated that exogenous fatty acids, including arachidonic acid, were incorporated into phosphatidylcholine primarily by the de novo pathway yielding highly labeled species with the exogenous fatty acid esterified at both the sn-1 and sn-2 positions of glycerol. After 20 min incubation with arachidonic acid, the 20:4-20:4 phosphatidylcholine contained about one-half of the [U-14C]glycerol label recovered in this lipid class. The data also showed that newly synthesized molecular species were extensively remodeled within 1 h.  相似文献   

20.
Recent studies from our laboratory have shown that methyl palmoxirate (MEP), an inhibitor of mitochondrial beta-oxidation of long chain fatty acids, can be used to increase incorporation of radiolabeled palmitic acid into brain lipids and reduce beta-oxidation of the fatty acid. Thus, MEP allows the use of carbon labeled palmitate for studying brain lipid metabolism in animals and humans by quantitative autoradiography or positron emission tomography (PET). As it is essential to pretreat human subjects with an acute dose of MEP prior to intravenous injection of [1-11C]palmitate for PET scanning, this study was undertaken to determine the plasma elimination half-life of MEP in rats and human subjects and to provide insight about the drug's absorption and metabolism. A gas chromatographic method was developed to measure MEP in body fluids. Following oral administration of MEP to rats (2.5 and 10 mg/kg) and to humans, the unmetabolized drug could not be detected in plasma or urine (sensitivity of detection was 1 ng). However, when MEP was injected intravenously (10 mg/kg) in rats, a peak initial concentration could be measured in plasma (7.7 microg/mL), the clearance of the drug from plasma was rapid (t1/2 = 0.6 min), which indicates that MEP readily enters tissue lipid pools or is metabolized like long-chain fatty acids. As no adverse experience occured in the 11 human subjects studied, oral administration of a single dose of MEP was safe under the conditions of this study and may be used to increase the incorporation of positron labeled palmitic acid for studying brain lipid metabolism in vivo by PET.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号