首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Traditional aged Cheddar cheese does not support Listeria monocytogenes growth and, in fact, gradual inactivation of the organism occurs during storage due to intrinsic characteristics of Cheddar cheese, such as presence of starter cultures, salt content, and acidity. However, consuming high-salt (sodium) levels is a health concern and the dairy industry is responding by creating reduced-salt cheeses. The microbiological stability of low-salt cheese has not been well documented. This study examined the survival of L. monocytogenes in low-salt compared with regular-salt Cheddar cheese at 2 pH levels stored at 4, 10, and 21°C. Cheddar cheeses were formulated at 0.7% and 1.8% NaCl (wt/wt) with both low and high pH and aged for 10 wk, resulting in 4 treatments: 0.7% NaCl and pH 5.1 (low salt and low pH); 0.7% NaCl and pH 5.5 (low salt and high pH); 1.8% NaCl and pH 5.8 (standard salt and high pH); and 1.8% NaCl and pH 5.3 (standard salt and low pH). Each treatment was comminuted and inoculated with a 5-strain cocktail of L. monocytogenes at a target level of 3.5 log cfu/g, then divided and incubated at 4, 10, and 21°C. Survival or growth of L. monocytogenes was monitored for up to 90, 90, and 30 d, respectively. Listeria monocytogenes decreased by 0.14 to 1.48 log cfu/g in all treatments. At the end of incubation at a given temperature, no significant difference existed in L. monocytogenes survival between the low and standard salt treatments at either low or high pH. Listeria monocytogenes counts decreased gradually regardless of a continuous increase in pH (end pH of 5.3 to 6.9) of low-salt treatments at all study temperatures. This study demonstrated that post-aging inoculation of L. monocytogenes into low-salt (0.7%, wt/wt) Cheddar cheeses at an initial pH of 5.1 to 5.5 does not support growth at 4, 10, and 21°C up to 90, 90, and 30 d, respectively. As none of the treatments demonstrated more than a 1.5 log reduction in L. monocytogenes counts, the need for good sanitation practices to prevent post-manufacturing cross contamination remains.  相似文献   

2.
Listeria monocytogenes biofilm formation renders these cells highly resistant to current sanitation methods, and probiotics may be a promising approach to the efficient inhibition of Listeria biofilms. In the present study, three Leuconostoc mesenteroides strains of lactic acid bacteria isolated from kimchi were shown to be effective probiotics for inhibiting Listeria biofilm formation. Biofilms of two L. monocytogenes serotypes, 1/2a (ATCC15313) and 4b (ATCC19115), in dual-species culture with each probiotic strain were decreased by more than 40-fold as compared with single-species Listeria biofilms; for instance, a reduction from 5.4 × 106 colony forming units (CFU)/cm2 L. monocytogenes ATCC19115 in single-species biofilms to 1.1 × 105 CFU/cm2 in dual-species biofilms. Most likely, one of the Leuconostoc strains, L. mesenteroides W51, led to the highest Listeria biofilm inhibition without affecting the growth of L. monocytogenes. The cell-free supernatant from the L. mesenteroides W51 culture containing large protein molecules (>30 kDa) also inhibited Listeria biofilms. These data indicate that Leuconostoc probiotics can be used to repress L. monocytogenes biofilm contamination on surfaces at food processing facilities.  相似文献   

3.
Three brands of commercial roast beef were purchased and artificially inoculated with a 5‐strain Listeria monocytogenes cocktail at 2 inoculation levels (approximately 3 and 6 Log CFU/g). Although all 3 brands contained sodium diacetate and sodium lactate, inoculated Listeria cocktail survived for 16 d in all 3 brands; significant increases in L. monocytogenes numbers were seen on inoculated Brand B roast beef on days 12 and 16. Numbers of L. monocytogenes increased to 4.14 Log CFU/g for the 3 Log CFU/g inoculation level and increased to 7.99 Log CFU/g for the 6 Log CFU/g inoculation level by day 16, with the pH values being 5.4 and 5.8 respectively. To measure the cell viability in potential biofilms formed, an Alamar blue assay was conducted. Brand B meat homogenate had the highest metabolic activities (P < 0.05). By comparing its metabolic activities to Brands A and C and the inoculated autoclaved meat homogenates, results indicated that the microflora present in Brand B may be the reason for high metabolic activities. Based on the denaturing gradient gel electrophoresis and the Shannon–Wiener diversity index analysis, the “Brand” factor significantly impacted the diversity index (P = 0.012) and Brand B had the highest microflora diversity (Shannon index 1.636 ± 0.011). Based on this study, results showed that antimicrobials cannot completely inhibit the growth of L. monocytogenes in ready‐to‐eat roast beef. Native microflora (both diversity and abundance), together with product formula, pH, antimicrobial concentrations, and storage conditions may all impact the survival and growth of L. monocytogenes.  相似文献   

4.
Post-processing contamination and growth of Listeria monocytogenes in whey cheeses stored under refrigeration is an important safety concern. This study evaluated commercially available nisin (Nisaplin®) as a biopreservative to control L. monocytogenes introduced post-processing on Anthotyros, a traditional Greek whey cheese, stored at 4°C in vacuum packages for up to 45 days. The whey used (pH 6.5–6.7) was from Feta cheese manufacture, and it was subjected either to natural acidification (pH 5.3, readjusted to 6.2 with 10% NaOH) prior to heating, or to direct acidification (pH 6.0–6.2) at 80°C with 10% citric acid. Nisin was added either to the whey (100 or 500 IU g−1) prior to heating, or to the cheese (500 IU g−1) prior to packaging, also inoculated with ca. 104 cfu g−1 of L. monocytogenes strain Scott A. In cheese samples without nisin, L. monocytogenes (PALCAM agar) exceeded 7 log cfu g−1 after the first 10 days of storage, irrespective of the whey acidification method. All nisin treatments had an immediate lethal effect (0.7–2.2 log reduction) on L. monocytogenes populations at inoculation (day 0), which was more pronounced with 500 IU g−1 added to the whey. This treatment also suppressed L. monocytogenes growth below the inoculation level for 30 and 45 days in naturally and directly acidified samples, respectively. All other treatments had weak antilisterial effects. Nisin reversed the natural spoilage flora of Anthotyros cheese from Gram-positive to Gram-negative, and this ecological alteration was far more pronounced in the most effective antilisterial treatments.  相似文献   

5.
We hypothesized that genomic regions specific to Listeria monocytogenes or selected L. monocytogenes strains may contribute to virulence and phenotypic differences among the strains. A whole genome alignment of two completed L. monocytogenes genomes and the one completed Listeria innocua genome initially identified 28 genomic regions of difference (RD) > 4 kb that were found in one or both L. monocytogenes genomes, but absent from the non-pathogenic L. innocua. In silico analyses using an additional 18 draft L. monocytogenes genomes showed that (i) 15 RDs were found in all or most L. monocytogenes genomes; (ii) three RDs were found in all or most lineage I genomes, but absent from lineage II genomes; and (iii) four RDs were found in all lineage II genomes, but no lineage I genomes. Null mutants in two L. monocytogenes-specific RDs (RD16 and RD30; found in most L. monocytogenes) and the lineage II-specific RD25 showed no evidence for impaired invasion or intracellular growth in selected tissue culture cells. Although, in pH 5.5 minimal media, the ΔRD30 null mutant showed reduced ability to compete with its parent strain, indicating that RD30 may have a role in L. monocytogenes growth under limited nutrient conditions at acidic pH.  相似文献   

6.
Listeria monocytogenes was enumerated during the manufacture and ripening of Turkish White cheese with particular reference to a) pasteurized milk, b) cheese milk after inoculation with L. monocytogenes (0 h( c) after curd formation (2 h( d) curd after pressing (6 h( e) curd after pH was reduced (17 h( f) curd after salting (32 h( and g) cheeses during ripening. Cheeses were also examined periodically for total solids, moisture and salt contents, pH values and aerobic plate count. An increase in the number ofL. monocytogenes was observed during manufacture. Following salting and throughout the storage period, numbers of L. monocytogenes decreased at a rate depending on the salt concentration, starter activity and storage time. The initial microbial number had a significant (P > 0.01) effect on the survival of L. monocytogenes during the storage period.  相似文献   

7.
8.
The objective of this study was to evaluate anti‐listerial efficacy of salts of organic acids, and their impact on the quality of frankfurters. Beef frankfurters were manufactured by incorporating organic acids in 5 different combinations: (1) control (no marinade addition; C); (2) sodium lactate (2% wt/wt; SL); (3) potassium lactate (2% wt/wt; PL); (4) sodium citrate (0.75% wt/wt; SC); and (5) sodium lactate (2% wt/wt)/sodium diacetate (0.25% wt/wt; SL/SD). Cooked frankfurters were inoculated with streptomycin‐resistant (1500 μg/mL) L. monocytogenes (7 log10 CFU/frank). Inoculated and noninoculated frankfurters were vacuum packaged and stored at 4 °C. Samples were taken weekly up to 10 wk for estimation of L. monocytogenes as well as aerobic plate count (APC) and psychrotrophs (PSY), respectively. Total of 2 independent trials of the entire experiment were conducted. Noninoculated beef frankfurters were evaluated weekly by untrained sensory panelists for 7 wk. SL, PL, and SC treatments did not (P > 0.05) adversely affect consumer acceptability through 8 wk although, SL/SD treatment was significantly (P ≤ 0.05) less preferred across all sensory attributes. SL/SD treatment negatively affected product quality, but was able to control APC, PSY, and L. monocytogenes levels. SC performed similar to the control throughout the 8, 9, and 10 wk storage periods, providing no benefit for inhibiting L. monocytogenes (increasing from 7 logs CFU/frank to 10 logs CFU/frank throughout storage) or extending shelf life of the beef frankfurters. In conclusion, 2% SL and PL, and 2% SL/0.25% SD may be effective L. monocytogenes inhibitors (maintaining inoculation levels of 7 logs CFU/frank during storage), but changes in SL/SD treatment formulation should be studied to improve product quality.  相似文献   

9.
Listeria monocytogenes continues to pose a food safety risk in ready-to-eat foods, including fresh and soft/semisoft cheeses. Despite L. monocytogenes being detected regularly along the cheese production continuum, variations in cheese style and intrinsic/extrinsic factors throughout the production process (e.g., pH, water activity, and temperature) affect the potential for L. monocytogenes survival and growth. As novel preservation strategies against the growth of L. monocytogenes in susceptible cheeses, researchers have investigated the use of various biocontrol strategies, including bacteriocins and bacteriocin-producing cultures, bacteriophages, and competition with native microbiota. Bacteriocins produced by lactic acid bacteria (LAB) are of particular interest to the dairy industry since they are often effective against Gram-positive organisms such as L. monocytogenes, and because many LAB are granted Generally Regarded as Safe (GRAS) status by global food safety authorities. Similarly, bacteriophages are also considered a safe form of biocontrol since they have high specificity for their target bacterium. Both bacteriocins and bacteriophages have shown success in reducing L. monocytogenes populations in cheeses in the short term, but regrowth of surviving cells can commonly occur in the finished cheeses. Competition with native microbiota, not mediated by bacteriocin production, has also shown potential to inhibit the growth of L. monocytogenes in cheeses, but the mechanisms are still unclear. Here, we have reviewed the current knowledge on the growth of L. monocytogenes in fresh and surface-ripened soft and semisoft cheeses, as well as the various methods used for biocontrol of this common foodborne pathogen.  相似文献   

10.
Listeria monocytogenes is a foodborne pathogen that is difficult to eliminate due to its ability to survive under different stress conditions such as low pH and high salt. To better control this pathogen in food, it is important to understand its survival mechanisms under these stress conditions. LMOf2365_0442, 0443, and 0444 encode for phosphotransferase transport system (PTS) permease (fructose‐specific IIABC components) that is responsible for sugar transport. LMOf2365_0445 encodes for glycosyl hydrolase. These genes were induced by high pressure and inhibited under salt treatments; therefore, we hypothesized that genes encoding these PTS proteins may be involved in general stress responses. To study the function of these genes, deletion mutants of the PTS genes (LMOf2365_0442, LMOf2365_0443, and LMOf2365_0444) and the downstream gene LMOf2365_0445 were created in L. monocytogenes strain F2365. These deletion mutants were tested under different stress conditions. The growth of ?LMOf2365_0445 was increased under nisin (125 μg/mL) treatments compared to the wild‐type (P < 0.01). The growth of ?LMOf2365_0442 in salt (brain–heart infusion medium with 5% NaCl) was significantly increased (P < 0.01), and ?LMOf2365_0442 showed increased growth under acidic conditions (pH 5.0) compared to the wild‐type (P < 0.01). The results from phenotypic arrays demonstrated that some of these mutants showed slightly slower growth under different carbon sources and basic conditions. The results indicate that deletion mutants ?LMOf2365_0442 and ?LMOf2365_0445 were more resistant to multiple stress conditions compared to the wild‐type, suggesting that they may contribute to the general stress response in L. monocytogenes. An understanding of the growth of these mutants under multiple stress conditions may assist in the development of intervention strategies to control L. monocytogenes in food.  相似文献   

11.
The cell growth biokinetics of Listeria monocytogenes and a bacteriocin-producing strain ofLactobacillus sake were studied. The organisms were grown both separately and together in a broth system. It was observed that Lact. sake was better suited to growth at low pH than L. monocytogenes. The presence of bacteriocin impacted on L. monocytogenes, by quickly reducing the number of these microbes in mixed populations. A model for the growth ofL. monocytogenes and Lact. sake populations grown separately and in mixed culture is proposed. The model includes a novel approach for better describing the effect of pH change, the ability of Lact. sake to produce bacteriocin and the effect of bacteriocin on L. monocytogenes in the broth culture. Additionally, terms are introduced that describe the competitive effect of one population on the other. The model is fitted to data collected for the growth of each population, either grown alone or together. There were no significant differences between the parameter estimates for each replicate, supporting the hypothesis that the proposed model is a useful representation of the growth and interaction of the two microbial populations.  相似文献   

12.
《Food microbiology》1996,13(2):137-148
The use of acriflavine in enrichment media forListeriaspp. has both direct and indirect effects on the isolation ofListeria monocytogenes. Increasing acriflavine concentrations affect both lag time and generation time ofL. monocytogenes, whereas hardly any effect is observed onListeria innocua. Because acriflavine binds to protein in the samples, a decrease in acriflavine activity results. This lesser activity may result in a better growth ofL. monocytogenes. At low pH-values (pH<5.8) more acriflavine is bound, but growth promoting effects are limited because growth of this pathogen is restricted at low pH. On account of this, one may expect that enrichment protocols employing low acriflavine concentrations with an adequate buffer, favour the isolation ofL. monocytogenes. Because comparative studies have paid no attention to the ratio ofL. monocytogenesto otherListeriaspp., virtually nothing is known about the inferior detection ofL. monocytogenes. Previous comparative studies combined with the results of this work indicate strongly that during enrichment procedures, other listeriae or competitive micro-organisms may mask the presence of this pathogen. For that reason, in enrichment protocols for the detection ofL. monocytogenes, it is worthwhile introducing an isolation medium that facilitates identification ofL. monocytogenesin the presence of high numbers of other listeriae.  相似文献   

13.
Two whey culture supernatants of CJNU 0147 and CJNU 0400 were found to effectively enhance the growth of Bifidobacterium longum FI10564 by 1.58 fold compared to non-fermented whey medium. The 2 isolates were identified to be Leuconostoc mesenteroides (99% identity) by 16S rRNA gene sequence analysis. To determine whether the whey culture supernatant of CJNU 0147 selectively stimulate the growth of bifidobacteria, the growth rates of Escherichia coli DH5α, Enterococcus faecalis KFRI 675, Listeria monocytogenes ATCC 19111, and Staphylococcus aureus ATCC 14458 with the supernatant were measured. In these experiments, the supernatant slightly inhibited the growths of bacteria except for E. coli, indicating that the whey culture supernatant had very little influence on the growth of these bacterial strains.  相似文献   

14.
《Food microbiology》2005,22(1):79-85
A survey was made in 1995–1996 for Listeria spp. in 63 soft cheeses, made from raw ewe's milk using traditional methods, in the Province of Beira Baixa (Portugal). Listeria spp. were isolated from 47 (75%) of the cheeses, L.monocytogenes was isolated from 29 (46%), and L.innocua but not L.monocytogenes from 18 (29%). Of 24 isolates of L.monocytogenes that were serotyped, 20 were serotype 4b, three were serotype 1/2b and one was serotype 1/2a. Phage typing of isolates of L.monocytogenes and L.innocua showed that in some cases a particular phage type was associated with cheese from a particular source. Twenty four strains of L.monocytogenes tested were able to grow at 30°C in culture medium adjusted with HCl to a pH in the range from 4.4 to 6.0 within 3 days; in the pH range 4.4–6.8 a representative strain grew most rapidly at pH 6.8. The pH range in the cheeses during maturation was between about 5.2–6.4. Whether L.monocytogenes could multiply in the cheeses would depend on factors such as concentration of organic acids and of salt, and storage temperature.  相似文献   

15.
In the present study, 33 brands of mozzarella cheese (pasteurized cow milk mozzarella obtained by direct acidification through the addition of food-grade citric acid or obtained by natural acidification through the addition of thermophilic starter cultures, mozzarella for pizza mainly obtained by addition of citric acid, and pasteurized buffalo milk mozzarella obtained by adding microbial rennet) were characterized for the factors potentially influencing the growth of Listeria monocytogenes (microbial populations, moisture, pH, and organic acids). Then, the growth potential of L. monocytogenes in mozzarella was investigated by challenge tests performed at different temperatures. The presence of heterogeneous microflora (lactobacilli, streptococci, Pseudomonas spp., and, for buffalo mozzarella, yeasts) was evidenced. Almost all the product typologies were classified as high-moisture mozzarella cheese because moisture was >52%. Moreover, pH varied from 5.32 to 6.43 depending on the manufacturing methodology applied. Organic acid concentrations too showed great variability depending on the mozzarella production method, with values ranging from less than limit of detection (LOD; 16 mg/kg) to 14,709 mg/kg, less than LOD (216 mg/kg) to 29,195 mg/kg, and less than LOD (47 mg/kg) to 1,725 mg/kg in the water phase of lactic, citric, and acetic acids, respectively. Despite this presence, the concentration of undissociated acids was lower compared with the minimum inhibitory concentrations estimated for L. monocytogenes by other authors. This was confirmed by the results of the challenge tests conducted inoculating the pathogen in mozzarella produced with the addition of citric acid, as the microorganism grew fast at each temperature considered (4, 9, 15, and 20°C). Good hygiene practices should be strictly applied, especially with the aim of avoiding postproduction contamination of mozzarella, as the presence of organic acids and microflora is insufficient to prevent L. monocytogenes growth.  相似文献   

16.
Angiotensin‐converting enzyme inhibitory (ACE‐I) activity as affected by Lactobacillus helveticus strains (881315, 881188, 880474, and 880953), and supplementation with a proteolytic enzyme was studied. Reconstituted skim milk (12% RSM) or whey protein concentrate (4% WPC), with and without Flavourzyme® (0.14% w/w), were fermented with 4 different L. helveticus strains at 37 °C for 0, 4, 8, and 12 h. Proteolytic and in vitro ACE‐I activities, and growth were significantly affected (P < 0.05) by strains, media, and with enzyme supplementation. RSM supported higher growth and produced higher proteolysis and ACE‐I compared to WPC without enzyme supplementation. The strains L. helveticus 881315 and 881188 were able to increase ACE‐I to >80% after 8 h of fermentation when combined with Flavourzyme® in RSM compared to the same strains without enzyme supplementation. Supplementation of media by Flavourzyme® was beneficial in increasing ACE‐I peptides in both media. The best media to release more ACE‐I peptides was RSM with enzyme supplementation. The L. helveticus 881315 outperformed all strains as indicated by highest proteolytic and ACE‐I activities.  相似文献   

17.
The aim of this study was to determine the growth kinetics of Listeria monocytogenes, with and without cold‐adaption, on fresh‐cut cantaloupe under different storage temperatures. Fresh‐cut samples, spot inoculated with a 4‐strain cocktail of L. monocytogenes (~3.2 log CFU/g), were exposed to constant storage temperatures held at 10, 15, 20, 25, or 30 °C. All growth curves of L. monocytogenes were fitted to the Baranyi, modified Gompertz, and Huang models. Regardless of conditions under which cells grew, the time needed to reach 5 log CFU/g decreased with the elevated storage temperature. Experimental results showed that there were no significant differences (P > 0.05) in the maximum growth rate k (log CFU/g h?1) and lag phase duration λ (h) between the cultures of L. monocytogenes with or without previous cold‐adaption treatments. No distinct difference was observed in the growth pattern among 3 primary models at various storage temperatures. The growth curves of secondary modeling were fitted on an Arrhenius‐type model for describing the relationship between k and temperature of the L. monocytogenes on fresh‐cut cantaloupe from 10 to 30 °C. The root mean square error values of secondary models for non‐ and cold‐adapted cells were 0.018, 0.021, and 0.024, and 0.039, 0.026, and 0.017 at the modified Gompertz, Baranyi, and Huang model, respectively, indicating that these 3 models presented the good statistical fit. This study may provide valuable information to predict the growth of L. monocytogenes on fresh‐cut cantaloupes at different storage conditions.  相似文献   

18.
Queso Fresco (QF), a fresh Hispanic-style cheese, is often associated with Listeria monocytogenes outbreaks and recalls. Queso Fresco's susceptibility to bacterial contamination is partially due to its high pH and moisture content as well as Listeria's tolerance for the salt content typical for QF. Nine different brands of US QF, 2 packages from 4 different lots (to account for temporal variability), were sampled. The pH, salt content, and moisture content were analyzed in addition to microbial testing including yeasts and molds, coliforms, lactic acid bacteria enumeration, and L. monocytogenes counts. The cheeses were also inoculated with a cocktail of 5 food and human isolates of food-borne outbreak-associated Listeria monocytogenes strains to evaluate how the differences between brands influenced Listeria growth. Three of the cheeses underwent additional genus-level microbial analysis using extracted 16S rDNA, allowing for phylogenetic analysis between bacterial taxa including diversity and relative abundance. We found little variation between the sampled QF pH (range = 6.62–6.86), salt content (1.53–2.01%), and moisture content (43.90–54.50%). Yeasts and molds were below the detection limit of enumeration in all of the cheeses and coliforms were below the detection limit across the first 3 lots, but were detected at varying levels in the fourth lot (>3.0 most probable number/g) for 3 of the brands. Listeria monocytogenes was not isolated after enrichment in any of the samples. All cheeses tested positive for the presence of lactic acid bacteria, with only 1 of the cheeses being labeled as produced with added cultures having substantial counts. Fourteen days after inoculation with L. monocytogenes, at least 2.5 log10 cfu/g of growth was found for all QF brands stored at 4°C. Microbial genus analysis showed that, among the 3 brands, the microbial community was more similar within brand than when compared with the other 2 brands. Thermus, Anoxybacillus, and Streptococcus accounted for the dominant genera of brands A, B, and C, respectively. These variations within the microbial community may account for sensory differences and help manufacturers determine quality control consistency more readily than culture-based methods.  相似文献   

19.
The objectives of this study were to evaluate the impact of pH and nitrite from celery juice concentrate (CJ) on the growth of Listeria monocytogenes in broth and on ham slices, and to evaluate the impact of pH and nitrite from CJ on quality attributes of the ham. The pH of both broth and ham were increased by the addition of CJ. The CJ was less effective than conventional nitrite at 100 mg/kg nitrite in broth, but in ham, the CJ treatments at both 100 and 200 mg/kg resulted in growth of L. monocytogenes (p > 0.05) similar to that of the conventional nitrite at the same concentrations. Reducing the pH of CJ before addition to the ham had greater impact on L. monocytogenes growth at 200 mg/kg nitrite than at 100 mg/kg. Celery juice concentrate may increase meat product pH which could have implications for the antimicrobial impact of nitrite in some products.  相似文献   

20.
The influence of four heat‐processing regimes and a storage phase on the behaviour of Listeria monocytogenes in ground pork was studied. The effects of pH and water activity (aw) were also tested. During the heat process phase, aw, the heat‐processing regime and its interactions with pH or aw, had a significant effect on the behaviour of L. monocytogenes. During the storage phase, all parameters tested and their interactions had significant effects. Nevertheless, the area in which the growth of L. monocytogenes was observed at the end of the experiment was not influenced by the heat‐processing regime tested. On the contrary, pH, aw and their interactions had significant effects on Listeria behaviour. The boundary of the growth area delimited by environmental conditions where growth was higher than 1.0 Log CFU g?1 from those where growth was lower than this limit was correctly predicted by Augustin's model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号