首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
α‐Galactoside‐free lupin flour has been used to supplement durum wheat semolina flour in order to increase the nutritive value of pasta products. Supplemented pasta products had a shorter cooking time, higher cooking water absorption, cooking loss and protein loss in water than control pasta prepared with only semolina. Sensory evaluation of cooked pastas showed that products supplemented with 80 g kg?1 of α‐galactoside‐free Lupinus angustifolius var. Emir flour or with 100 g kg?1 of α‐galactoside‐free Lupinus angustifolius var. Troll flour showed the same acceptability by panellists as the semolina pasta. These levels of supplementation were selected for further studies. The cooked α‐galactoside‐free lupin/semolina pastas showed higher amounts of protein, dietary fibre, calcium, phosphorus, magnesium, zinc and antioxidant capacity than control pasta and a reasonable level of vitamin B1, vitamin B2 and vitamin E. Biological assessment of cooked pastas indicated that the true protein digestibility did not change after the fortification of semolina but protein efficiency ratio increased sharply in the pasta supplemented with α‐galactoside‐free lupin flours (2.07 and 1.92 for Emir and Troll lupin varieties, respectively) in comparison with the control pasta (1.11). It is concluded that the α‐galactoside‐free lupin flours are an adequate ingredient to improve the nutritional quality of pasta products without adding flatulent oligosaccharides. Copyright © 2006 Society of Chemical Industry  相似文献   

2.
The study was conducted on the effect of the addition of common wheat bran on the chemical composition, physical properties, cooking quality and sensory traits of durum wheat pasta. The pasta was produced on an industrial scale, applying an addition of common wheat bran at doses ranging from 20 to 40%. The products obtained were compared to the pasta from whole‐grain durum wheat flour, produced under identical conditions and with commercially available whole‐grain durum wheat pasta. The increase in the content of wheat bran in the pasta caused a significant increase (Duncan test, P ≤ 0.05) of the content of protein, lipids, ash and total dietary fibre (TDF). The application of 25–30% addition of common wheat bran allowed obtaining the products which are as rich in dietary fibre as the pasta prepared at the same technological parameters from whole‐grain durum flour. The pasta containing up to 30% of bran was characterised with lower losses of dry mass and higher resistance to overcooking, in comparison with the pasta made of whole‐grain durum. Simultaneously, the products had very good sensory quality.  相似文献   

3.
Whole grain sorghum is a valuable source of resistant starch and polyphenolic antioxidants and its addition into staple food like pasta may reduce the starch digestibility. However, incorporating nondurum wheat materials into pasta provides a challenge in terms of maintaining cooking quality and consumer acceptability. Pasta was prepared from 100% durum wheat semolina (DWS) as control or by replacing DWS with either wholegrain red sorghum flour (RSF) or white sorghum flour (WSF) each at 20%, 30%, and 40% incorporation levels, following a laboratory‐scale procedure. Pasta samples were evaluated for proximate composition, in vitro starch digestibility, cooking quality, and consumer acceptability. The addition of both RSF and WSF lowered the extent of in vitro starch digestion at all substitution levels compared to the control pasta. The rapidly digestible starch was lowered in all the sorghum‐containing pastas compared to the control pasta. Neither RSF or WSF addition affected the pasta quality attributes (water absorption, swelling index, dry matter, adhesiveness, cohesiveness, and springiness), except color and hardness which were negatively affected. Consumer sensory results indicated that pasta samples containing 20% and 30% RSF or WSF had acceptable palatability based on meeting one or both of the preset acceptability criteria. It is concluded that the addition of wholegrain sorghum flour to pasta at 30% incorporation level is possible to reduce starch digestibility, while maintaining adequate cooking quality and consumer acceptability.  相似文献   

4.
5.
This research is focusing on the texture, rheology, and sensory properties of pasta products enriched with the sweet potato starch (SPS) as well as on the content of resistant starch (RS) in these products. SPS was extracted from orange sweet potatoes using 1 mol. L−1 Sodium chloride solution. Durum wheat flour semolina was partially supplemented with 10, 20, and 30% (w/w) by SPS in the pasta formulation and the influence of enrichment on the cooking quality, mechanical and sensory properties, and the color was observed. SPS addition resulted in decreased water absorption and shorter dough development time, but the stability of the dough was also decreased. The optimum cooking time for pasta was reduced, but only slightly, on the other side, the swelling index increased, which negatively impacted on the firmness of the products. Increasing of the SPS content also resulted in higher stickiness values for pasta. When up to 20% of wheat flour was replaced, the color of finished products was less acceptable. In the products, the resistant and total starch content were determined. Pasta cooking resulted in the reduction of RS content, which was then increased by storing products for 24 hr. It can be concluded that the substitution of part of semolina flour with SPS increased the level of RS, but on the other side, it caused some significant differences from the quality of pasta made from semolina only.  相似文献   

6.
Specific mechanical energy (SME), mechanical energy, extrusion rate and temperature of extruded spaghetti were monitored to determine the effects of semolina, hydration level and non‐traditional ingredients on pasta extrusion using a semi‐commercial pasta press with a fixed screw speed of 25 rpm. SME transferred to the dough during extrusion and the temperature of extruded spaghetti were greater with strong than with weak gluten semolina and at low than at high absorption levels. When compared with semolina hydrated to 300 g kg?1 absorption, SME transferred to the dough was 13 kJ kg?1 lower for semolina mixed with buckwheat (Fagopyrum esculentum Moench.) bran flour, 47 kJ kg?1 lower for semolina mixed with flaxseed (Linum usitativissimum L.) flour and 7 kJ kg?1 lower for semolina mixed with wheat (Triticum turgidum var. durum L.) bran. Weak gluten semolina, high absorption levels and non‐traditional ingredients reduced the mechanical energy required for extrusion more than they reduced extrusion rate. The target temperature for extruded spaghetti was 45 °C. The temperature of extruded spaghetti containing flaxseed flour was below 45 °C whereas the temperature of spaghetti containing wheat bran was above 45 °C, regardless of semolina type or absorption level. Copyright © 2006 Society of Chemical Industry  相似文献   

7.
Pigeon peas (Cajanus cajan) seeds were germinated for 4 days at 20 °C in darkness in order to improve the nutritional quality of seeds. Germination brought about a sharp reduction of α-galactosides, phytic acid and trypsin inhibitor activity (83%, 61% and 36%, respectively) and an increment of vitamin B2 (145%), vitamin C (from negligible amounts to 14 mg/100 g d.m.), vitamin E (108%) and total antioxidant capacity (28%). These flours were used as ingredients to produce pasta products in a proportion of 5%, 8% and 10%. The supplemented pasta products had shorter cooking time and higher water absorption, cooking and protein losses in water than had control pasta (100% semolina). From sensory evaluation, fortified pasta generally had acceptability similar to control pasta. Cooked pasta with the highest level of substitution (semolina:germinated pigeon pea flour at 10%) was chemically and biologically evaluated and results showed that protein, fat, dietary fibre and mineral contents were improved. Fortified pasta provided more vitamin B1, B2, E and antioxidant capacity than did control pasta. Biological assessment of fortified, cooked pasta indicated that true TD and PER value increased by 12% and 64%, respectively, in comparison with control. The germinated pigeon pea flour can be an excellent ingredient to increase the nutritional value of semolina pasta without affecting the sensory properties.  相似文献   

8.
The present study aims to explore the feasibility for utilization of semolina from Triticum aestivum and Triticum dicoccum in place of Triticum durum semolina in pasta processing. Pasta samples were prepared from the above mentioned wheat semolina with and without additives (ascorbic acid, dry gluten powder, hydroxy propyl methyl cellulose, and glycerol mono stearate) using lab scale extruder. Pasta samples were evaluated for pasting, protein profiles, cooking, texture, color, sensory, and microstructure parameters. The results indicated that T. aestivum semolina gave the lowest onset gelatinization temperature (66.9 °C) but the highest peak viscosity (1,053 BU). The T. aestivum pasta had a cream color (b = 15.69) while the T. dicoccum pasta was brownish (b = 11.91, a = 5.89). The cooking loss was more in the case of T. aestivum pasta (8.20%) compared with T. durum (6.90%) and T. dicoccum (7.12%) samples. Texture studies indicated that T. aestivum pasta had the least ratings on shear value (1.80 N) and overall sensory score of 6.21 N whereas shear value of 2.42 N and sensory scores of 6.89 after T. dicoccum pasta was comparable with that of T. durum pasta (2.46 N and 7.19 N). Scanning electron micrograph studies supported this. It was observed from the results obtained from gel filtration chromatograph that protein subunits play an important role in deciding pasta-making quality of different wheat species. The study also indicated that pasta quality of T. aestivum and T. dicoccum could be improved with unique combination of additives.  相似文献   

9.
The objective of this research was to study the effect of the addition of common bean flour to semolina on the cooking quality and total phenolic content of pasta. Pasta was obtained at three temperatures (60, 70 and 80 °C) and two levels of added common bean flour (15% and 30%); plain pasta (100% semolina) was used as control. Moisture, optimal cooking time, cooking loss, water absorption capacity, colour change, firmness and total phenolic and furosine contents were measured. The cooking time and water absorption were diminished in spaghetti pasta with added common bean flour; cooking loss increased and firmness decreased as a function of the bean flour percentage. A linear relationship between colour change and common bean flour content in pasta was found. Increases of furosine and phenolic contents in pasta with the addition of bean flour were observed.  相似文献   

10.
The addition of pseudocereal flours to semolina is becoming more and more popular to improve the nutritional quality of the resultant pasta. The aim of this study was the evaluation of several properties of commercial pasta made from a mixture of buckwheat flour and durum wheat semolina. The characterisation of products, belonging to different producers, focused on the evaluation of chemical and physical properties, such as water uptake and mechanical properties before and after cooking and surface characteristics. A sensory analysis was also performed in order to evaluate firmness, resistance to breaking and overall acceptability. The results highlighted high heterogeneity of the mechanical properties, solid loss and water absorption among the samples. The great variability could be explained by the different processing conditions adopted by each producer, particularly by the procedure used to form and shape the dough into the final product.  相似文献   

11.
In recent years, the renewed interest for foods with a natural image has increased the demand for dry pasta produced from “hulled” wheat such as the Triticum turgidum ssp. dicoccum, also known as “farro”. In order to contribute to the general knowledge, two lines of farro were considered in this study. To have a comparison, an old cultivar of Triticum turgidum ssp. durum (Senatore Cappelli) in addition to a commercial semolina were also examined. All semolina samples were used to produce pasta samples. Results showed some differences among pasta samples that seem to be due not to the presence of specific protein subunits but especially to the quantitative ratio between the different subunits. Results also reconfirmed the role played by the drying technology that is able to affect the sensory characteristics of pasta products.  相似文献   

12.
Nannochloropsis is a microalga characterised by having high amounts of eicosapentaenoic acid (EPA), a fatty acid known for its health benefits. The aim of this study was to elaborate dry pasta with a significant contribution of EPA using Nannochloropsis sp., without affecting the quality product and with good consumer acceptance. Technological quality was analysed in terms of cooking properties and texture profile. Cooked pasta was characterised through proximal composition, phenolic compound, fatty acid content and sensorial analysis. It was possible to replace up to 30% of wheat flour with microalgae without affecting the technological quality of pasta and with a significant contribution of EPA to the daily diet (0.237 g per 100 g pasta). The incorporation of 10% and 20% Nannochloropsis in pasta formulation allowed to decrease the n6:n3 ratio from 25:1 to 5:1 and 2:1, respectively. Therefore, the microalgae are an interesting ingredient to increase EPA consumption in products like pasta, while the sensory evaluation confirms the possibility towards a commercial approach.  相似文献   

13.
选取市售8种颗粒小麦粉样品和1种普通小麦粉,测试评价二者的颗粒特性、理化品质、溶剂保持能力的区别,制作挂面以评价颗粒小麦粉的加工品质特性。结果表明,颗粒小麦粉的粒径分布与普通小麦粉之间差异显著(P<0.05),普通小麦粉中粒径(D50)为60.32μm,颗粒小麦粉中粒径(D50)均大于77.43μm。与普通小麦粉相比,颗粒小麦粉灰分和损伤淀粉含量低,面筋指数高、面筋质量好。除乳酸保持能力外,颗粒小麦粉的其余三种溶剂保持能力均显著低于普通小麦粉(P<0.05)。颗粒小麦粉挂面拥有良好的柔韧性和耐煮性,干物质吸水率和蒸煮损失率显著高于普通小麦粉挂面(P<0.05)。颗粒小麦粉挂面煮后的硬度、粘附性较低,延伸性较好,表现出较好的质地及爽滑不易断的特征。  相似文献   

14.
The characterisation of traditional Italian pasta obtained by mixing amounts of toasted whole meal with re-milled semolina and other ingredients was obtained by means of physico-chemical, rheological, mechanical, sensory and image analyses. The toasted meal showed higher ash, fibre and protein contents than re-milled semolina. The replacement of percentages of re-milled semolina with the toasted meal and soft flour increased tenacity and decreased extensibility and strength, making the dough less suitable for pasta-making. The P / L values were indices of high starch damage. The replacement of part of re-milled semolina and water with toasted whole wheat meal, soft flour and eggs increased the optimal cooking time and the amount of water absorbed during cooking but made the other cooking parameters worse. The image analysis provided evidence of the changes induced by the use of toasted wholemeal, soft flour and eggs in the microscopic structure of pasta protein and starch.  相似文献   

15.
The replacement of semolina (SEM) with raw:popped (90:10) amaranth flour blend (AFB) in pasta making at 25, 50, 75, and 100 g/100 g levels (flour basis, 14 g of water/100 g) was carried out to evaluate the effects on cooking quality and texture of the supplemented pasta samples. Significant differences on cooking quality characteristics and texture of the pasta samples were observed. The pasta solid loss increased, weight gain and firmness decreased as the AFB level increased. The semolina pasta showed the lowest solid loss (7 g/100 g) and the highest weight gain (188.3 g/100 g) and firmness (1.49 N), whereas the amaranth blend pasta was the softer (around half of the firmness of semolina pasta) and lost the higher amount of solids (11.5 g/100 g). The raw and popped AFB was suitable for increasing the nutritional quality through dietary fiber and high quality protein and even to obtain gluten-free pasta with acceptable cooking quality (solid loss of 3.5 g/100 g higher than that considered as acceptable for semolina pasta). The amaranth blend used in this study enables the partial or total replacement of wheat semolina in pastas with acceptable cooking quality and texture.  相似文献   

16.
Quality attributes of waxy durum wheat (Triticum turgidum L), milled semolina and cooked spaghetti were examined and compared with those of two non‐waxy durum cultivars. With the exception of kernel hardness, wheat quality characteristics were similar for both waxy and non‐waxy durum. Compared with average values obtained for durum wheat grown in North Dakota (USA) during the crop year 2000, the values obtained for the wheat used in this study were equal or better for most parameters evaluated. Semolina extraction for all samples was lower than the 2000 average of 62.6%. The waxy lines had higher ash, lower speck count, similar protein quantity, lower wet gluten and stronger mixograph curves than the non‐waxy cultivars. Waxy durum semolina had higher lipid content, starch damage, stirring number and flour swelling values. Spaghetti made from waxy durum semolina had shorter cooking time, similar cooking loss and cooked weight and lower firmness values, which would be unacceptable by most standards. Spaghetti made from blends containing 20–80% waxy durum semolina were evaluated. Cooking time and firmness decreased and cooking loss increased as the amount of waxy semolina increased. Acceptable spaghetti was obtained using 20–40% waxy semolina blends, depending on the quality of the non‐waxy blending material. Copyright © 2004 Society of Chemical Industry  相似文献   

17.
Dynamic measurements were made with a controlled stress rheometer to study the viscoelastic properties (G', G', δ) of wheat doughs (45% wb water content) for fresh pasta production prepared with different blends of durum wheat semolina and common wheat flour with different concentrations of sodium chloride. Increasing the semolina and sodium chloride content, increased the strength and the solid-like behaviour of semolina-flour blends. The physical properties of dough were strongly dependent on particle size distribution and salt addition. By manipulating semolina-flour ratio and ionic strength, it was possible to obtain semolina-flour doughs with a rheological behaviour close to that of pure semolina dough.  相似文献   

18.
Flaxseed ( Linum usitatissimum L.) is an emerging food ingredient because of its several health benefits. Research was conducted to determine the effects of semolina, hydration level during extrusion and flaxseed flour concentration on the physical and cooking characteristics of freshly extruded pasta. The appearance of fresh pasta reflected the appearance of the ingredients. Fresh pasta became darker and redder as flaxseed flour concentration increased. Flaxseed flour did not affect cooking loss or water absorption during cooking of fresh pasta. However, flaxseed flour reduced the cooked firmness of fresh pasta by decreasing the dough strength. The cooked firmness of fresh pasta containing flaxseed flour was improved by using a semolina that makes a strong dough rather than a weak dough, and by extruding at a low (29%) compared to high (31%) hydration level.

PRACTICAL APPLICATIONS


Research results reported in this article would be useful in the development of a processing protocol for fresh pasta containing flaxseed flour and possibly other nontraditional ingredients. The results provide support for the need to use a strong dough-forming semolina and to extrude the semolina–flaxseed flour mixture at a low hydration level (29%) in order to produce a fresh pasta that has desirable cooking/cooked properties.  相似文献   

19.
Foods with elevated levels of resistant starch (RS) may have beneficial effects on human health. Pasta was enriched with commercial resistant starches (RSII, Hi Maize™ 1043; RSIII, Novelose 330™) at 10%, 20% and 50% substitution of semolina for RSII and 10% and 20% for RSIII and compared with pasta made from 100% durum wheat semolina to investigate technological, sensory, in vitro starch digestibility and structural properties. The resultant RS content of pasta increased from 1.9% to ∼21% and was not reduced on cooking. Significantly, the results indicate that 10% and 20% RSII and RSIII substitution of semolina had no significant effects on pasta cooking loss, texture and sensory properties, with only a minimal reduction in pasta yellowness. Both RS types lowered the extent of in vitro starch hydrolysis compared to that of control pasta. X-ray diffraction and small-angle scattering verified the incorporation of RS and, compared to the control sample, identified enhanced crystallinity and a changed molecular arrangement following digestion. These results can be contrasted with the negative impact on pasta resulting from substitution with equivalent amounts of more traditional dietary fibre such as bran. The study suggests that these RS-containing formulations may be ideal sources for the preparation of pasta with reduced starch digestibility.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号