首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An extracellular α‐l ‐rhamnosidase from Penicillium citrinum MTCC‐3565 has purified to homogeneity from its culture filtrate using ethanol precipitation and cation‐exchange chromatography on carboxymethyl cellulose. The purified enzyme gave a single protein band corresponding to molecular mass of 45.0 kDa in SDS‐PAGE analysis showing the purity of the enzyme preparation. The native PAGE analysis showed the monomeric nature of the purified enzyme. Using p‐nitrophenyl α‐l ‐rhamnopyranoside as substrate, Km and Vmax values of the enzyme were 0.30 mm and 27.0 μm min mg?1, respectively. The kcat value was 20.1 s giving kcat/Km value of 67.0 mm s?1 for the same substrate. The pH and temperature optima of the enzyme were 8.5 and 50 °C, respectively. The activation energy for the thermal denaturation of the enzyme was 29.9 KJ mol?1. The α‐l ‐rhamnosidase was able to hydrolyse naringin, rutin and hesperidin and liberated l ‐rhamnose, indicating that the purified enzyme can be used for the preparation of α‐l ‐rhamnose and pharmaceutically important compounds by derhamnosylation of natural glycosides containing terminal α‐l ‐rhamnose. The α‐l ‐rhamnosidase was active at the level of ethanol concentration present in wine, indicating that it can be used for improving wine aroma.  相似文献   

2.
Pepsins 1 and 2 from the stomach of skipjack tuna (Katsuwonus pelamis) were purified to homogeneity by using a series of chromatographic purification involving DEAE-cellulose, Sephadex G-50 and Sephadex G-75 with increase in purity of 246-fold and 213-fold, respectively. Molecular weights of pepsins 1 and 2 were estimated by SDS–PAGE to be 33.9 and 33.7 kDa, respectively. The N-terminal amino acid sequences of the first 20 amino acids of both isoenzymes were YQDGTEPMTNDADLSYYGVI. The optimal pH and temperature for pepsin 1 were 2.5 and 50 °C, respectively, while pepsin 2 showed optimal activity at pH 2.0 and 45 °C. The activity of two pepsins was stable in the pH range of 2–5 and at temperatures up to 50 °C. The activity of purified pepsins was strongly inhibited by pepstatin A in a dose-dependent manner. SDS and cysteine showed inhibitory effects toward both pepsins. Activity of pepsin 2 was slightly activated by NaCl, but NaCl had no effect on pepsin 1. Pepsins 1 and 2 had high affinity and hydrolytic activity toward hemoglobin with K m of 54 and 71 μM, respectively. k cat of pepsins 1 and 2 were 38.1 and 44.3 s−1, respectively. Both pepsins effectively hydrolyzed bovine serum albumin, egg white, natural actomyosin from brownstripe red snapper muscle and acid-solubilized collagen from arabesque greenling skin. Nevertheless, the hydrolytic activity was slightly less than that of pepsin from porcine stomach.  相似文献   

3.
An α‐l ‐rhamnosidase secreted by Penicillium citrinum MTCC‐8897 has been purified to homogeneity from the culture filtrate of the fungal strain using ammonium sulphate precipitation and cation‐exchange chromatography on carboxymethyl cellulose. The sodium dodecyl sulphate/polyacrylamide gel electrophoresis analysis of the purified enzyme gave a single protein band corresponding to the molecular mass 51.0 kDa. The native polyacrylamide gel electrophoresis also gave a single protein band confirming the enzyme purity. The Km and Vmax values of the enzyme for p‐nitrophenyl α‐l ‐rhamnopyranoside were 0.36 mm and 22.54 μmole min?1 mg?1, respectively, and kcat value was 17.1 s?1 giving kcat/Km value of 4.75 × 104 m ?1 s?1. The pH and temperature optima of the enzyme were 7.0 and 60 °C, respectively. The purified enzyme liberated l ‐rhamnose from naringin, rutin, hesperidin and wine, indicating that it has biotechnological application potential for the preparation of l ‐rhamnose and other pharmaceutically important compounds from natural glycosides containing terminal α‐l ‐rhamnose and also in the enhancement of wine aroma.  相似文献   

4.
The extracellular α‐l ‐rhamnosidase has been purified by growing a new fungal strain Aspergillus awamori MTCC‐2879 in the liquid culture growth medium containing orange peel. The purification procedure involved ultrafiltration using PM‐10 membrane and anion‐exchange chromatography on diethyl amino ethyl cellulose. The purified enzyme gave single protein band in SDS‐PAGE analysis corresponding to molecular mass 75.0 kDa. The native PAGE analysis of the purified enzyme also gave a single protein band, confirming the purity of the enzyme. The Km and Vmax values of the enzyme for p‐nitrophenyl‐α‐l ‐rhamnopyranoside were 0.62 mm and 27.06 μmole min?1 mg?1, respectively, yielding kcat and kcat/km values 39.90 s?1 and 54.70 mm ?1 s?1, respectively. The enzyme had an optimum pH of 7.0 and optimum temperature of 60 °C. The activation energy for the thermal denaturation of the enzyme was 35.65 kJ?1 mol?1 K?1. The purified enzyme can be used for specifically cleaving terminal α‐l ‐rhamnose from the natural glycosides, thereby contributing to the preparation of pharmaceutically important compounds like prunin and l ‐rhamnose.  相似文献   

5.
A novel salt-tolerant acid protease was produced from Aspergillus oryzae LK-101 (AOLK-101). The AOLK-101 protease was purified to homogeneity by ammonium sulfate precipitation, DEAE-Sephadex A-50 and Sephadex G-100 chromatographies in order. The specific activity and the purification ratio of the purified protease were 2,301 unit/mg and 11.6 fold, respectively, with 25 kDa of molecular weight on sodium dodecyl sulfate-polyacrylamide gel electrpphoresis (SDS-PAGE). Its optimal pH and temperature were pH 6.5 and 50°C, respectively. This protease was relatively stable at pH 4.5–7.5, below 40°C, and up to 10% salt concentration. The protease was moderately inhibited by Ag2+ and Zn2+, and strongly by ethylenediamide tetraacetic acid (EDTA) and phenylmethysulfonyl fluoride (PMSF), but activated by Cu2+ and Mn2+. Therefore, the AOLK-101 protease was a serine protease based on the influence of metal ions and inhibitors. K m , V max , k cat , and k cat /K m values of AOLK-101 protease for hammastein milk casein were 1.04 mg/mL, 124.84 unit/L, 163.5/sec, and 3.9×106/m·sec, respectively.  相似文献   

6.
BACKGROUND: In Tunisia, sardinelle (Sardinella aurita) catches totalled about 13 300 t in 2002. During processing, solid wastes including heads and viscera are generated, representing about 30% of the original raw material. Viscera, one of the most important by‐products of the fishing industry, are recognised as a potential source of digestive enzymes, especially proteases with high activity over a wide range of pH and temperature conditions. This paper describes the purification procedure and some biochemical characterisation of trypsin from S. aurita viscera. RESULTS: Trypsin from the viscera of sardinelle (S. aurita) was purified by fractionation with ammonium sulphate, Sephadex G‐75 gel filtration, Sepharose mono Q anion exchange chromatography, ultrafiltration and a second Sephadex G‐75 gel filtration, resulting in a 5.42‐fold increase in specific activity and 6.1% recovery. The molecular weight of the purified enzyme was estimated to be 24 kDa using size exclusion chromatography and sodium dodecyl sulfate polyacrylamide gel electrophoresis. The purified enzyme showed esterase‐specific activity on N‐α‐benzoyl‐L ‐arginine ethyl ester (BAEE) that was four times greater than its amidase‐specific activity on N‐α‐benzoyl‐DL ‐arginine‐p‐nitroanilide (BAPNA). The optimal pH and temperature for enzyme activity were pH 8 and 55 °C respectively using BAEE as a substrate. The trypsin kinetic constants Km and kcat on BAPNA were 1.67 mmol L?1 and 3.87 s?1 respectively, while the catalytic efficiency kcat/Km was 2.31 s?1 L mmol?1. CONCLUSION: Trypsin was purified from sardinelle (S. aurita) viscera. Biochemical characterisation of S. aurita trypsin showed that this enzyme can be used as a possible biotechnological tool in the fish‐processing and food industries. Copyright © 2008 Society of Chemical Industry  相似文献   

7.
A carboxypeptidase was purified and crystallised from wheat bran. Disc gel electrophoresis at pH 4·0 and ultracentrifugal analysis revealed that the enzyme was essentially homogeneous. The sedimentation constant and isoelectric point were determined to be 6·3 S and 6·0, respectively. The molecular weight of the enzyme was estimated to be 118,000 by a gel filtration method. The enzyme liberated carboxyl terminal amino acid residues from a wide range of N-substituted dipeptides and tripeptides which contain l-proline. It had a pH optimum at pH 4·0 for Z-Glu-Tyr (Z-benzyloxycarbonyl). The Km and kcat values for Z-Glu-Tyr at pH 4·0 and 30°C were 0·19 mm and 20 s?1, respectively. The enzyme hydrolysed Z-Gly-Pro-Leu-Gly-Pro and bradykinin sequentially at pH 4·0 from their carboxyl terminal amino acid residues. The enzyme activity was completely inhibited by DFP.  相似文献   

8.
Directed evolution was used to improve the thermostability of Aspergillus niger glucoamylase (GA) expressed in Saccharomyces cerevisiae. A starch‐plate assay developed to screen GA mutants for thermostability gave results consistent with those of irreversible thermoinactivation kinetic analysis. Several thermostable multiply‐mutated GAs were isolated and characterized by DNA sequencing and kinetic analysis. Three new GA mutations, T62A, T290A and H391Y, have been identified that encode GAs that are more thermostable than wild‐type GA, and that improve thermostability cumulatively. These individual mutations were combined with the previously constructed thermostable site‐directed mutations D20C/A27C (forming a disulfide bond), S30P, and G137A to create a multiply‐mutated GA designated THS8. THS8 GA is substantially more thermostable than wild‐type GA at 80°C, with a 5.1 kJ/mol increase in the free energy of thermoinactivation, making it the most thermostable Aspergillus niger GA mutant characterized to date. THS8 GA and the singly‐mutated GAs have specific activities and catalytic efficiencies (kcat/Km) similar to those of wild‐type GA.  相似文献   

9.
A phytate-degrading enzyme (myo-inositol hexakisphosphate phosphohydrolase) has been purified about 5,400-fold from germinated oat seedlings to apparent homogeneity. The molecular mass of the native monomeric enzyme was estimated to be about 67 kDa. Optimal pH for degradation of phytate was 5.0 and the optimal temperature 38 °C. Kinetic parameters for the hydrolysis of Na-phytate are KM 30 µM and kcat 356 s−1 at 35 °C and pH 5.0. The oat phytase exhibits a broad affinity for various phosphorylated compounds and hydrolyses phytate in a stepwise manner. The first hydrolysis product was identified as D /L -l(1,2,3,4,5) P5. © 1999 Society of Chemical Industry  相似文献   

10.
The conditions for enzyme activity (pH and temperature) and kinetic parameters for the thermal inactivation of β‐glucosidase enzyme in vanilla beans have been investigated. The maximum enzyme activity was detected at pH 6.5 and 38 °C. The values obtained for Vmax and Km were 62.05 units and 2.07 mm, respectively. When hot water treatment (the most practical method of vanilla bean killing) was applied, β‐glucosidase treated at pH 6.0 and 60 °C for 3 min lost 51% of activity, while at 70 °C for 90 s the enzyme lost 60% of activity and at 80 °C for 30 s the enzyme lost 48% of its activity. When vanilla beans were cured in an oven at 60 °C for 36 to 48 h all β‐glucosidase activity was lost.  相似文献   

11.
A fast breakdown of glycogen is observed in muscles of stress-susceptible pigs leading to pale, soft and exudative (PSE) meat. We report a comparative study of pyruvate kinase from muscles of normal and PSE-prone pigs. Compared with the enzyme from normal muscle, pyruvate kinase isolated from PSE muscle shows a five times lower Michaelis constant,K m, for phosphoenol pyruvate and a more than ten times higherk cat/K m value. The pH dependency of the enzymatic activity is shifted to more acidic values for pyruvate kinase from PSE muscles. According to isoelectric focusing, pyruvate kinase from PSE muscle consists of three isoforms, while only two isoforms are detectable in pyruvate kinase preparations from normal pigs. The various isoforms were isolated by preparative isoelectric focusing and their steady-state properties were compared. Isoform 3, which is found only in PSE muscle, shows a 10-fold higher specific activity, a 30-fold lowerK m value and a 100-fold increasedk cat/K m value for phosphoenol pyruvate as compared to isoform 1. The presence of isoform 3 in PSE muscle appears to be responsible for the high activity of this enzyme under the more acidic conditions prevailing in PSE muscle. In vitro phosphorylation and dephosphorylation experiments using total enzyme and purified isoenzyme 1 suggest that isoforms 2 and 3 arise from isoform 1 by phosphorylation. Thus protein phosphorylation seems to be responsible for the shift in activity of pyruvate kinase, a key enzyme of glycolysis, under the acidic conditions of PSE muscles.  相似文献   

12.
The specific activity and catalytic efficiency (kcat/Km) of the recombinant putative protein from Providencia stuartii was the highest for d-lyxose among the aldose substrates, indicating that it is a d-lyxose isomerase. Gel filtration analysis suggested that the native enzyme is a dimer with a molecular mass of 44 kDa. The maximal activity for d-lyxose isomerization was observed at pH 7.5 and 45 °C in the presence of 1 mM Mn2+. The enzyme exhibited high isomerization activity for aldose substrates with the C2 and C3 hydroxyl groups in the left-hand configuration, such as d-lyxose, d-mannose, l-ribose, d-talose, and l-allose (listed in decreasing order of activity). The enzyme exhibited the highest activity for d-xylulose among all pentoses and hexoses. Thus, d-lyxose was produced at 288 g/l from 500 g/l d-xylulose by d-lyxose isomerase at pH 7.5 and 45 °C for 2 h, with a conversion yield of 58 % and a volumetric productivity of 144 g l− 1 h− 1. The observed kcat/Km (920 mM− 1 s− 1) of P. stuartiid-lyxose isomerase for d-xylulose is higher than any of the kcat/Km values previously reported for sugar and sugar phosphate isomerases with monosaccharide substrates. These results suggest that the enzyme will be useful as an industrial producer of d-lyxose.  相似文献   

13.
Trypsin from the pyloric caeca of bigeye snapper was purified and characterized. Trypsin had an apparent molecular weight of 23.8 kDa when analyzed using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS‐PAGE) and substrate‐gel electrophoresis. The trypsin fraction consisted of three isoforms as evidenced by the appearance of three different bands on native‐PAGE. Optimal activity was observed at 55C and pH range of 8–11. The activity of trypsin fraction was completely inhibited by soybean trypsin inhibitor and was partially inhibited by E‐64 and ethylenediaminetetraacetic acid. CaCl2 partially protected the trypsin fraction from activity loss at 40C, while NaCl (0–20%) decreased the activity in a concentration‐dependent manner. The apparent Michaelis–Menten constant (Km) and catalytic constant (kcat) were 0.312 mM and 1.06 s, respectively when Nα‐Benzoyl‐dl ‐arginine ρ‐nitroanilide was used as a substrate. Trypsin from the pyloric caeca of bigeye snapper generally showed similar characteristics to other fish trypsins.  相似文献   

14.
In this study, chitosan beads were prepared by using a cross-linking agent and the resulting beads were employed in immobilization process. Studies on free and immobilized pepsin systems for determination of optimum temperature, optimum pH, thermal stability, pH stability, operational stability, storage stability and kinetic parameters were carried out. The optimum temperature interval for free pepsin and immobilized pepsin were 30–40 and 40–50 °C, respectively. Free and immobilized pepsin showed higher activity at pH 2.0–4.0. Apparent Km = 12.0 g L−1 haemoglobin (1.56 mM tyrosine) and Vmax = 5220 μmol (mg protein min)−1 values were obtained for free pepsin, while apparent Km = 20.0 g L−1 haemoglobin (2.16 mM tyrosine) and Vmax = 2780 μmol (mg protein min)−1 values were obtained for immobilized pepsin. Thermal stability and storage stability of immobilized pepsin were higher than that of free pepsin. Milk clotting activity was used for evaluation of the applicability of pepsin immobilization to industrial process. Optimum milk clotting temperature was found as 40 °C for free pepsin and 50 °C for immobilized pepsin.  相似文献   

15.
A trypsin was purified from pyloric caeca of pirarucu (Arapaima gigas). The effect of metal ions and protease inhibitors on its activity and its physicochemical and kinetic properties, as well its N-terminal sequence, were determined. A single band (28.0 kDa) was observed by SDS–PAGE. Optimum pH and temperature were 9.0 and 65 °C, respectively. The enzyme was stable after incubation for 30 min in a wide pH range (6.0–11.5) and at 55 °C. The kinetic parameters Km, kcat and kcat/Km were 0.47 ± 0.042 mM, 1.33 s−1 and 2.82 s−1 mM−1, respectively, using BApNA as substrate. This activity was shown to be very sensitive to some metal ions, such as Fe2+, Hg2+, Zn2+, Al3+, Pb2+, and was highly inhibited by trypsin inhibitors. The trypsin N-terminal sequence IVGGYECPRNSVPYQ was found. The features of this alkaline peptidase suggest that it may have potential for industrial applications (e.g. food and detergent industries).  相似文献   

16.
Polyphenol oxidase (PPO) was extracted from Sultaniye grapes grown in Turkey, and its characteristics in terms of pH and temperature optima, thermal inactivation, kinetic parameters and potency of some PPO inhibitors were studied. Optimum pH and temperature for grape PPO were found to be 3.4 and 30 °C, using catechol as substrate. Km and Vmax values were found to be 44.5 ± 5.47 mm and 0.695 ± 0.0353 OD410 min?1, respectively. Four inhibitors were tested in this study and the most potent inhibitor was sodium metabisulphite, followed by ascorbic acid. From the thermal inactivation studies in the range of 65–80 °C, the half‐life values of the enzyme ranged between 2.6 and 49.5 min. Activation energy (Ea) and Z values were calculated to be 208.5 kJ mol?1 (r2 = 0.9544) and 10.95 °C (r2 = 0.9517), respectively.  相似文献   

17.
A buckwheat acid phosphatase (orthophosphoric‐monoester phosphohydrolase, EC 3.1.3.2) was purified about 250‐fold from nongerminated buckwheat seeds to apparent homogeneity with a recovery of 4% from the acid phosphatase activity in the crude extract. It is the major acid phosphatase among eight different acid phosphatases identified in the crude extract. The purified enzyme behaved as a monomeric protein of molecular mass about 45 kDa. The purified enzyme exhibited a single pH optimum at 5.25. Optimum temperature for the degradation of p‐nitrophenyl phosphate was 50C. The kinetic parameters for the hydrolysis of p‐nitrophenyl phosphate were determined to be KM= 76 μmol L?1 and kcat= 924 s?1 at pH 5.25 and 37C. While the enzyme failed to act on phytate as a substrate, the enzyme exhibited a broad substrate selectivity. The purified enzyme showed no measureable carboxylesterase activity and no divalent metal ion requirement.  相似文献   

18.
Aspergillus awamori glucoamylase catalytic domain, linker, and starch‐binding domain, the first and third expressed from yeast, have molecular masses of 56.2, 12.6 and 12.9 kDa, respectively, as determined by MALDI‐TOF mass spectroscopy, and have 10.2, 73.2 and 7.0 % (w/w) carbohydrate, respectively, showing overglycosylation by yeast. Unfolding of the starch‐binding domain monitored by circular dichroism is reversible at pH 6.0—8.0, with the unfolding Tm and ΔH increasing from 49.7 to 58.5 °C and from 284 to 351 kJ/mol, respectively, as pH decreases from 8.0 to 6.0. The catalytic domain unfolds irreversibly at pH 7.5, producing a single asymmetric endotherm by differential scanning calorimetry, with Tm and ΔH at a 1 °C/min heating rate being 60.9 °C and 1720 kJ/mol, but with both increasing as the heating rate increases. This suggests that unfolding is partially under kinetic control, while various tests show that it does not follow a simple two‐state irreversible model. Values of ΔH from calculated solvent‐accessible surface areas of unglycosylated catalytic and starch‐binding domains are about 100 kJ/mol lower than experimentally determined ΔH values of the corresponding glycosylated domains, showing the effect of glycosylation on unfolding enthalpies.  相似文献   

19.
The hydrolysis of α-, β- and γ-cyclodextrins by Aspergillus oryzae α-amylase was studied at pH 5.2 and 37°C. The kinetic parameters were determined and it was found that the V max value increased markedly in the order α-, β- and γ-cyclodextrin, but no significant difference was observed in the Km values. The qualitative and quantitative distribution of the hydrolysis products were determined by HPLC. In the case of γ-cyclodextrin the time course of the kinetic parameters was compared to the qualitative and quantitative distribution of the hydrolysis products.  相似文献   

20.
Three different neutralizers (NaOH, KOH, NH4OH) were employed for pH maintenance during the growth of Lactobacillus delbrueckii subsp. bulgaricus ATCC 11842, used as a source of β-galactosidase extracts. The crude enzymatic extract (CEE) was obtained by bead milling of the cell paste, collected from the cultivation of the source microorganism in skim milk at 43 °C and constant pH. Lactose hydrolysis kinetics in skim milk and proteolytic activity during the hydrolysis were evaluated. The use of NH4OH as a neutralizer resulted in significantly (P<0.05) higher enzyme activity of the CEE than that obtained using NaOH or KOH. The kinetic parameters, kcat and Km, of the Michaelis–Menten model were determined for lactose hydrolysis in skim milk using 1% (v/v) addition of a CEE. There was no significant (P>0.05) difference in kcat among the different extracts, with a clear temperature dependence following Arrhenius kinetics. The rate of lactose hydrolysis was dependent on the initial enzyme activity and temperature. The highest initial rate was observed at 65 °C; however, the enzyme deactivation occurred within 1–1.5 h. The proteolytic activity determined by HPLC peptide mapping was significantly (P<0.05) higher in the moderate temperature range (20 and 37 °C) than at 7 or 55 °C. Industrial relevance: Since lactose intolerance affects a large proportion of the world's population, an economically feasible and effective process with a cheap source of β-galactosidase may have a substantial potential. The use of crude β-galactosidase extracts from Lactobacillus bulgaricus 11842 appears to be a promising approach for development of a technologically feasible process of lactose hydrolysis for food or non-food uses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号