首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Anthocyanins bioavailability is a major issue regarding their biological effects and remains unclear due to few data available on this matter. This work aimed to evaluate the absorption of anthocyanins at the intestine using Caco‐2 cells. Anthocyanin extract, rich in malvidin‐3‐glucoside, was obtained from red grape skins and tested on Caco‐2 cells. The absorption of anthocyanins, in absence or presence of 1% ethanol, was detected by HPLC/DAD/LC‐MS. Our results showed that this transport was significantly increased in the presence of ethanol especially after 60 min of incubation. In addition, cells that were pretreated for 96 h with anthocyanins (200 μg/mL) showed an increase of their own transport (about 50% increase). Expression of glucose transporters sodium‐dependent glucose transporter 1, facilitative glucose transporters 5, and facilitative glucose transporters 2 was assessed by RT‐PCR. It was found that facilitative glucose transporters 2 expression was increased (60%) in Caco‐2 cells pretreated with anthocyanins, by comparison with controls. When the effect of anthocyanin extract on 3H‐2‐deoxy‐D ‐glucose uptake was tested, an inhibitory effect was observed (about 60% decrease). However, the malvidin aglycone was tested and had no effect. In conclusion, anthocyanins could be absorbed through Caco‐2 cells, and can interfere with their own transport and also with glucose intestinal uptake.  相似文献   

2.
Asp‐Leu‐Glu‐Glu (DLEE) is one of the antioxidant peptides purified from Chinese dry‐cured Xuanwei ham in our previous study. In the current work, the stability in a simulated digestion system, the transportation pathway and the antioxidant ability of DLEE were further investigated in a Caco‐2 cell monolayer. In the simulated gastrointestinal digestion system, no oligopeptides were generated. In the transport trial, the inhibitors cytochalasin D increased the transport of DLEE across the Caco‐2 cell monolayer, with Papp values of 3.22 × 10?6 cm s?1. A decreased expression occludin was observed with the DLEE incubation in the cell monolayer, and the antioxidant activity showed to be increased gradually in basolateral side. This study indicates that the absorption of DLEE could mainly occur via paracellular transport and provides information about its antioxidant activity after being absorbed across a cell monolayer.  相似文献   

3.
Metabolism by phase II enzymes and transport from intestinal cells back into the lumen by ATP binding cassette (ABC) transporters limits the bioavailability of the flavanone hesperetin, the aglycone of hesperidin. This study investigates to what extent other flavonoids modulate the metabolism and transport of hesperetin by characterizing the effect of co‐administrating a series of flavonoids using Caco‐2 cell monolayers in a two‐compartment transwell system. Flavonoids may interfere with hesperetin metabolism and can also inhibit the apically located ABC transporter breast cancer resistance protein (ABCG2) which was previously shown to be responsible for the apical transport of hesperetin metabolites. Co‐exposure of Caco‐2 cell monolayers to hesperetin with specific flavonoids reduced the ratio of apical efflux to basolateral transport of hesperetin metabolites, and in some cases, also reduced the amount of hesperetin metabolites detected extracellularly. As intracellular accumulation of hesperetin metabolites did not account for this decrease, inhibition of metabolism of hesperetin is likely the underlying mechanism for the reduced metabolite formation and excretion. In spite of the reduction in metabolism the amount of hesperetin metabolites transported to the basolateral side significantly increased upon co‐exposure with specific flavonoids and therefore co‐administration of specific flavonoids could be a strategy to improve the bioavailability of hesperetin.  相似文献   

4.
The objectives of the current study were to determine S‐methyl‐L‐methionine (SMM) from various Brassicaceae family vegetables by using validated analytical method and to characterize the intestinal transport mechanism of SMM by the Caco‐2 cells. The SMM is well known to provide therapeutic activity in peptic ulcers. The amount of SMM from various Brassicaceae family vegetables ranged from 89.08 ± 1.68 μg/g to 535.98 ± 4.85 μg/g of dry weight by using validated ultra‐performance liquid chromatography‐electrospray ionization‐mass spectrometry method. For elucidating intestinal transport mechanism, the cells were incubated with or without transport inhibitors, energy source, or a metabolic inhibitor. Phloridzin and verapamil as inhibitors of sodium glucose transport protein (SGLT1) and P‐glycoprotein, respectively, were not responsible for cellular uptake of SMM. Glucose and sodium azide were not affected by the cellular accumulation of SMM. The efflux ratio of SMM was 0.26, implying that it is not effluxed through Caco‐2 cells. The apparent coefficient permeability (P app) of SMM was 4.69 × 10?5 cm/s, indicating that it will show good oral absorption in in vivo .  相似文献   

5.
Although the bioavailability of large peptides with biological activity is of great interest, the intestinal transport has been described for peptides up to only nine residues. β‐casein (β‐CN, 193–209) is a long and hydrophobic peptide composed of 17 amino acid residues (molecular mass 1881 Da) with immunomodulatory activity. The present work examined the transport of the β‐CN (193–209) peptide across Caco‐2 cell monolayer. In addition, we evaluated the possible routes of the β‐CN (193–209) peptide transport, using selective inhibitors of the different routes for peptide transfer through the intestinal barrier. The results showed that the β‐CN (193–209) peptide resisted the action of brush‐border membrane peptidases, and that it was transported through the Caco‐2 cell monolayer. The main route involved in transepithelial transport of the β‐CN (193–209) peptide was transcytosis via internalized vesicles, although the paracellular transport via tight‐junctions could not be excluded. Our results demonstrated the transport of an intact long‐chain bioactive peptide in an in vitro model of intestinal epithelium, as an important step to prove the evidence for bioavailability of this peptide.  相似文献   

6.
Scope : It is assumed that vitamin D is absorbed by passive diffusion. However, since cholecalciferol (vitamin D3) and cholesterol display similar structures, we hypothesized that common absorption pathways may exist. Methods and results : Cholecalciferol apical transport was first examined in human Caco‐2 and transfected Human embryonic kidney (HEK) cells. Cholecalciferol uptake was then valuated ex vivo and in vivo, using either wild‐type mice, mice overexpressing Scavenger Receptor class B type I (SR‐BI) at the intestinal level or mice treated or not with ezetimibe. Cholecalciferol uptake was concentration‐, temperature‐ and direction‐dependent, and was significantly impaired by a co‐incubation with cholesterol or tocopherol in Caco‐2 cells. Moreover Block Lipid Transport‐1 (SR‐BI inhibitor) and ezetimibe glucuronide (Niemann‐Pick C1 Like 1 inhibitor) significantly decreased cholecalciferol transport. Transfection of HEK cells with SR‐BI, Cluster Determinant 36 and Niemann‐Pick C1 Like 1 significantly enhanced vitamin D uptake, which was significantly decreased by the addition of Block Lipid Transport‐1, sulfo‐N‐succinimidyl oleate (Cluster Determinant 36 inhibitor) or ezetimibe glucuronide, respectively. Similar results were obtained in mouse intestinal explants. In vivo, cholecalciferol uptake in proximal intestinal fragments was 60% higher in mice overexpressing SR‐BI than in wild‐type mice (p<0.05), while ezetimibe effect remained non‐significant. Conclusion: These data show for the first time that vitamin D intestinal absorption is not passive only but involves, at least partly, some cholesterol transporters.  相似文献   

7.
A three‐tier Caco‐2 cell system was developed to assess simultaneously iron dialysability, uptake and transport across the Caco‐2 monolayer from an in vitro digested food matrix. The effect of lactate (0–200 mmol L−1) on iron absorption from rye bread subjected to simulated peptic (pH 5.5) and pancreatic digestion (pH 6.5) was investigated to model absorption pre and post the sphincter of Oddi. Lactate increased dialysability (11.8%, P < 0.05) in peptic digests whereas it reduced it in pancreatic digests (4.9%, P < 0.001). Iron uptake from the peptic digests was in the region of 39–76 pmol mg−1 protein whereas it decreased from 281 to 51 pmol mg−1 protein in pancreatic digests. Iron transport was calculated for the peptic digests from [14C]polyethylene glycol movement and only at 200 mmol L−1 lactate was there any detectable transcellular transport (180 pmol mg−1 protein, P < 0.05). Iron absorption was positively correlated to dialysable iron for both digests (R2 = 0.48 and 0.41, respectively, P < 0.01) and the effect of lactate was therefore associated mainly with iron bioaccessibility. The three‐tier system showed the potential to obtain detailed insight into each step involved in iron transport across the monolayer from a food mixture. Copyright © 2006 Society of Chemical Industry  相似文献   

8.
Scope: Zearalenone (ZEN) and α‐zearalanol (α‐ZAL, zeranol) were studied in differentiated Caco‐2 cells and in the Caco‐2 Millicell® system in vitro to simulate their in vivo intestinal absorption and metabolism in humans. Methods and results: In addition to metabolic reduction/oxidation, extensive conjugation with glucuronic acid and sulfate of the parent compounds and their phase I metabolites was observed. The positional isomers of the glucuronides and sulfates were unambiguously identified: Sulfonation occurred specifically at the 14‐hydroxyl group, whereas glucuronidation was less specific and, in addition to the preferred 14‐hydroxyl group, involved the 16‐ and 7‐hydroxyl groups. Using the Caco‐2 Millicell® system, an efficient transfer of the glucuronides and sulfates of ZEN and α‐ZAL and their phase I metabolites into both the basolateral and the apical compartment was observed after apical administration. The apparent permeability coefficients (Papp values) of ZEN, α‐ZAL and the ZEN metabolite α‐zearalenol were determined, using an initial apical concentration of 20 μM and a permeation time of 1 h. Conclusion: According to the Papp values, the three compounds are expected to be extensively and rapidly absorbed from the intestinal lumen in vivo and reach the portal blood both as aglycones and as glucuronide and sulfate conjugates in humans.  相似文献   

9.
The aim of this study was to evaluate the bioavailability of zinc from infant foods (adapted, follow‐up and toddler milk‐based formulas and fruit juices containing milk and cereals, FMC) using solubility, dialyzability and a model combining simulated gastrointestinal digestion and zinc uptake and transport by Caco‐2 cells. The greater solubility of zinc from infant formulas compared with fruit juices (FMC) could be due to the greater casein phosphopeptide content resulting from casein hydrolysis. The highest zinc dialysis percentage corresponded to FMC, which on the other hand had the lowest zinc contents of the analyzed samples. The presence of organic acids in samples of this kind favors the formation of soluble low molecular weight complexes with zinc, thereby increasing the solubility of the latter. Bifidobacterium addition exerted no effect upon zinc bioavailability. Transport and uptake efficiency in Caco‐2 cells were significantly greater for toddler formulas, which presented the highest casein contents. The greater efficiency in zinc transport and uptake from the powdered toddler formula compared with the liquid formulation could be explained by the effect of Maillard reaction products. Copyright © 2006 Society of Chemical Industry  相似文献   

10.

1 Scope

Known pharmacological activities of guava (Psidium guajava) include modulation of blood glucose levels. However, mechanistic details remain unclear in many cases.

2 Methods and results

This study investigated the effects of different guava leaf and fruit extracts on intestinal glucose transport in vitro and on postprandial glucose levels in vivo. Substantial dose‐ and time‐dependent glucose transport inhibition (up to 80%) was observed for both guava fruit and leaf extracts, at conceivable physiological concentrations in Caco‐2 cells. Using sodium‐containing (both glucose transporters, sodium‐dependent glucose transporter 1 [SGLT1] and glucose transporter 2 [GLUT2], are active) and sodium‐free (only GLUT2 is active) conditions, we show that inhibition of GLUT2 was greater than that of SGLT1. Inhibitory properties of guava extracts also remained stable after digestive juice treatment, indicating a good chemical stability of the active substances. Furthermore, we could unequivocally show that guava extracts significantly reduced blood glucose levels (≈fourfold reduction) in a time‐dependent manner in vivo (C57BL/6N mice). Extracts were characterized with respect to their main putative bioactive compounds (polyphenols) using HPLC and LC‐MS.

3 Conclusion

The data demonstrated that guava leaf and fruit extracts can potentially contribute to the regulation of blood glucose levels.  相似文献   

11.
Abstract: Iron and zinc deficiencies are the most prevalent nutrient deficiencies worldwide. They often coexist as the dietary factors, especially phytate, which impairs iron absorption also affects zinc absorption. Therefore, suitable strategies are required to control multiple micronutrient deficiencies in populations that subsist on high‐phytate foods such as the whole wheat flour based Indian bread (chapatti). The objective of the study, therefore, was to test the bioavailability of iron and zinc in 2 multiple micronutrient beverage premixes in the absence and presence of chapatti. The premix‐1 contained iron, zinc, and vitamin A while premix‐2 contained all micronutrients in premix‐1, plus folic acid and ascorbic acid. Ferritin induction and 65Zn uptake were assessed using coupled in vitro digestion/Caco‐2 cell line model as the surrogate markers of iron and zinc bioavailability, respectively. The results show that iron bioavailability from premixes‐1 and 2 was similar in the absence of chapatti. However, premix‐2 showed significantly higher iron bioavailability compared to premix‐1 in the presence of chapatti. In contrast, the zinc uptake was similar from both premixes‐1 and 2 in the absence or presence of chapatti. These results suggest that both the premixes provide bioavailable minerals, but premix‐2 appears to be promising in the presence of foods that have high phytate.  相似文献   

12.
Bread is a staple food in many countries and an important source of iron and zinc. The bioavailability of these minerals is generally low because of the content of phytic acid. Traditional Iranian breads were prepared with flours of different extraction rates, Sangak at 93% and Barbari at 82%. Breads were dephytinised by addition of Aspergillus niger phytase during in vitro digestion. The effect upon iron and zinc bioaccessibility in the Caco‐2 cell model was investigated. The cellular uptake of iron and zinc was lower from Sangak, compared to Barbari, despite higher mineral content in Sangak. Dephytinisation of both breads increased iron uptake in the Caco‐2 cells (0.65 vs. 1.64 in Sangak and 0.77 vs. 1.97 ng mg?1 protein in Barbari). Zinc uptake increased from 0.98 to 2.8 in Sangak and from 1.4 to 2.9 ng mg?1 protein in Barbari. Thus, dephytinisation substantially improves iron and zinc bioaccessibility.  相似文献   

13.
The effect of polyphenols, phenolic acids and tannins (PPTs) from strawberry and apple on uptake and apical to basolateral transport of glucose was investigated using Caco‐2 intestinal cell monolayers. Substantial inhibition on both uptake and transport was observed by extracts from both strawberry and apple. Using sodium‐containing (glucose transporters SGLT1 and GLUT2 both active) and sodium‐free (only GLUT2 active) conditions, we show that the inhibition of GLUT2 was greater than that of SGLT1. The extracts were analyzed and some of the constituent PPTs were also tested. Quercetin‐3‐O‐rhamnoside (IC50=31 μM), phloridzin (IC50=146 μM), and 5‐caffeoylquinic acid (IC50=2570 μM) contributed 26, 52 and 12%, respectively, to the inhibitory activity of the apple extract, whereas pelargonidin‐3‐O‐glucoside (IC50=802 μM) contributed 26% to the total inhibition by the strawberry extract. For the strawberry extract, the inhibition of transport was non‐competitive based on kinetic analysis, whereas the inhibition of cellular uptake was a mixed‐type inhibition, with changes in both Vmax and apparent Km. The results in this assay show that some PPTs inhibit glucose transport from the intestinal lumen into cells and also the GLUT2‐facilitated exit on the basolateral side.  相似文献   

14.
The effects of Maillard reaction products (MRP) from glucose–lysine and glucose–methionine on calcium bioavailability were studied by in vivo (rats) and in vitro (Caco‐2 cells) assays. Equimolar glucose/lysine and glucose/methionine mixtures (40% moisture) were heated (150 °C, 30 min) to prepare samples (GL30 and GM30, respectively). For 21 days, rats were fed a control diet (control group) or diets containing separately 3% of the heated mixtures (GL30 and GM30 groups, respectively). In the last week a calcium balance was performed, after which the animals were sacrificed and some organs and serum were removed to analyze calcium levels. A second balance was carried out throughout the experimental period to calculate global calcium retention (retained calcium during the entire 21 days). Unheated and heated samples were used for calcium transport experiments in Caco‐2 cells. Food intake and final body weight were lower in the GM30 group. Calcium fecal excretion decreased and digestibility increased in this group. Accordingly, increased calcium transport in Caco‐2 cells was found in the presence of the GM30 sample, when compared with the unheated sample. However, global calcium retention tended to decrease in the GM30 group, mainly owing to the lower food intake. Bone calcium concentrations decreased in the animals fed the MRP diets. The possible long‐term effects of MRP intake on calcium digestibility and bone calcium should be taken into account to avoid related diseases. Copyright © 2005 Society of Chemical Industry  相似文献   

15.
This study reports on the intestinal permeability of salt‐containing mixtures of amino acids extracted from codfish salting wastewater. Permeability was evaluated in vitro using the Caco‐2 cell line model; cell integrity during exposure to mixtures of amino acids was estimated by measuring the transepithelial electrical resistance (TEER). The effect of salt (NaCl) on the permeability and on the intestinal cell's integrity was also examined. Permeation rate (i.e. transport) was ≥95% for all amino acids except for creatine, for which it was 6%. Values for apparent permeability coefficients, Papp > 10?5 cm s?1, for mixture with isotonic concentration of NaCl suggest that amino acids are very likely to be absorbed in humans. Mixture with a hypertonic level of NaCl exerts a cytotoxic effect in intestinal cells resulting in a loss of epithelium integrity. Results show that isotonic mixture of amino acids extracted from codfish salting wastewater could be used in food, feed, cosmetic and pharmaceutical formulations. These applications could contribute to the fish industry sustainability.  相似文献   

16.
The influence of Maillard reaction products (MRP) from glucose–lysine on iron bioavailability was investigated. Equimolar glucose–lysine mixtures (GL, 40% moisture) were heated (150 °C, for 30, 60 and 90 min) to prepare samples GL30, GL60 and GL90, respectively, and were used to study the influence of MRP on iron solubility, iron uptake and transport in Caco‐2 cells and iron balance in rats. After an initial increase with GL30, in vitro iron solubility decreased in the presence of most of the heated samples. The Caco‐2 cell experiments showed that Fe cell content increased in the presence of heated mixtures with respect to GL, whereas transport was less affected. Iron balance was determined in rats fed diets containing the GL30 and GL90 samples (3%) for a 21 day period and compared with that measured in a control group. Consumption of glucose–lysine heated mixtures increased total iron retention, although hemoglobin values decreased. Iron accumulations in organs such as the spleen, kidney and small intestine were observed. Copyright © 2004 Society of Chemical Industry  相似文献   

17.
Abstract: Heat‐killed lactic acid bacteria not only possess immunomodulatory functions but also provide the advantages of longer product shelf life, easier storage, and more convenient transportation. To establish appropriate heat treatments for the industrial preparation of probiotics with immunomodulatory effects, 4 different heat treatments were used to kill 11 strains of lactic acid bacteria. Comparisons among the strains and with viable forms were carried out in terms of immunomodulatory activity and adhesion to Caco‐2 cells. Field‐emission scanning electron microscope (FE‐SEM) was employed to observe morphological changes in bacteria after heating. Among the 11 viable strains, Lactobacillus gasseri AI‐88 was the strongest inducer of interferon‐gamma (IFN)‐γ and interleukin (IL)‐12p70 production. However, after heat treatments its stimulatory ability was attenuated. Heat‐killed Enterococcus faecalis YM‐73 and Lactobacillus salivarius AP‐32 strains showed enhanced stimulation of IFN‐γ and IL‐12p70 secretion and coincidental decrease in IL‐13 production. The adhesion of lactic acid bacteria to Caco‐2 cells decreased with increases in temperature. However, heat exposure did not influence immunomodulatory activity. With rising temperature, roughness and unevenness of bacterial cell surfaces increased significantly. The results indicated that heat‐killed E. faecalis YM‐73 and L. salivarius AP‐32 have immunomodulatory ability via increased Th1‐associated cytokines and reduced Th2‐associated cytokines, switching the immune response from a Th2 toward a Th1 response. These 2 heat‐killed strains have the potential for development as commercial products.  相似文献   

18.
Wheat germ protein (WGP) was extracted with subcritical water and then hydrolyzed with Alcalase 2.4 L to obtain antioxidant hydrolysates. Wheat germ peptides (WG‐P, Mw < 1 kDa) were purified by using Sephadex G‐15 column chromatography. The results showed that WG‐P‐4 possessed the strongest DPPH radical scavenging activity in comparison with other peptides fractions. In addition, free amino acids and LC‐MS/MS analysis showed that Gly‐Pro‐Phe, Gly‐Pro‐Glu, and Phe‐Gly‐Glu were the major peptides of WG‐P‐4. Interestingly, the WG‐P‐4 fractions had good absorption characteristic. Moreover, the ratio of Papp both sides of apical compartment (AP) and basolateral compartment (BL) were between 0.5 and 1.0 on Caco‐2 cell model, which indicated that transmembrane transportation was mainly passive transport. Therefore, WG‐P could exert an effective antioxidant action by across the intestinal epithelium.  相似文献   

19.
The ability of catechins and their related compounds to inhibit breast cancer resistance protein (BCRP) function in Caco‐2 cell monolayers was investigated with mitoxantrone as a BCRP substrate. The gallate or pyrogallol moiety on the catechin structure seemed to promote increased cellular accumulation and inhibit efflux transport of mitoxantrone. The ability of gallate catechins such as (?)‐epigallocatechin gallate (EGCG) and (?)‐epicatechin gallate (ECG) to increase cellular accumulation and inhibit efflux transport of mitoxantrone was greater than that of nongallate catechins. Gallic acid octyl ester (GAO) also increased intracellular mitoxantrone accumulation. Experiments using GAO derivatives indicated that the gallate moiety required the presence of a long carbon chain for BCRP inhibition. Cellular accumulation and reduced efflux transport of mitoxantrone were greater with epigallocatechin 3‐(3″‐O‐butyl) gallate than with EGCG. EGCG inhibition of BCRP seemed to be restricted by hydrophobicity. The co‐administration of catechins, particularly EGCG and related compounds, with greater hydrophobicity may increase the therapeutic activities of BCRP substrates such as mitoxantrone.  相似文献   

20.
Gly‐Pro‐Ala‐Gly‐Pro‐His‐Gly‐Pro‐Pro‐Gly (GPAGPHGPPG), a chelating peptide derived from Alaska pollock skin, has been approved with outstanding ability to chelate calcium, zinc and iron ions. In this study, the stability of GPAGPHGPPG during in vitro gastrointestinal enzymatic digestion, the potential binding site between peptide and metal ions as well as its effects on mineral transport in Caco‐2 cells were investigated. Results showed that approximately 75% of GPAGPHGPPG remained intact at the end of the in vitro gastrointestinal enzymatic digestion. The formation of peptide‐metal complex was potentially related to histidine and cyclic structure in terms of dehydration. Moreover, GPAGPHGPPG revealed significant promotional effects on calcium (112.7%, P < 0.01), zinc (32.3%, P < 0.01) and iron (27.7%, P < 0.01) transport in Caco‐2 cell monolayer. In conclusion, GPAGPHGPPG could be developed as a potential functional ingredient to prevent mineral deficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号