首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using a heterogeneous catalyst, Co(II)-ethanolamine complex sorbed on Dowex-50W resin, the chemiluminescence (CL) of luminol in unbuffered or weakly acidic solution was studied in the presence of H2O2. The maximum luminol CL wavelength at pH 5.7 was 448 nm, 23 nm longer than that in a basic solution (pH 10.5). Three different ligands, mono-, di-, and triethanolamine, and six transition metal ions, Co(II), Cu(II), Ni(II), Mn-(II), Fe(II), and Fe(III) were compared by CL measurements. The CL intensity decreased in the order mono- > di- > triethanolamine and Co(II) > Cu(II) > Ni(II) > Fe-(III) > Mn(II) > Fe(II). This heterogeneous CL system was developed as H2O2 and glucose flow-through sensors. Detection limits (S/N = 3) of H2O2 and glucose using Dowex-50W-X4-Co(II)-monoethanolamine as catalyst are 1 x 10(-7) M and 1 x 10(-6) M, respectively. On the basis of the studies of the CL, fluorescence, UV-vis and ESCA spectra and the effect of dissolved oxygen in luminol solution, a mechanism for CL emission in unbuffered solution was considered as the formation of a superoxide radical ion during the decomposition of H2O2 catalyzed by the Co(II)-ethanolamine immobilized resin. Then the superoxide radical ion acted on luminol and the CL was emitted. The applications of the proposed method to determine H2O2 in rainwater without any special pretreatment and glucose in human urine and orange juice samples give satisfactory results.  相似文献   

2.
We have fabricated pure germanium nitrides (Ge3N4) using high-density plasma nitridation and investigated electrical properties of Au/Ge3N4/Ge capacitors. We achieved equivalent oxide thickness (EOT) of 1.4 nm, and dielectric constant of Ge3N4 was estimated to be 9.7. The gate leakage current density of 4.3 A/cm2 in the accumulation condition at V(fb)-1 V, where V(fb) is the flatband voltage, was one order of magnitude lower than that of conventional poly-Si/SiO2/Si stacks. The interface state density (D(it)) of Ge3N4/Ge interfaces evaluated by a low-temperature conductance method exhibited a minimum value of 9.4 x 10(11) cm(-2)eV(-1) at E - E(v) = 0.27 eV. Furthermore, the insulating property and interface quality of Ge3N4/Ge system was found to be thermally stable up to 650 degrees C. These results indicate that Ge3N4 is a promising candidate for either a gate insulator or an interfacial layer under high-k dielectrics for Ge-MIS devices.  相似文献   

3.
Oxidative chemisorption and cathodic stripping reductive desorption of iodide have been studied at a smooth polycrystalline gold (Au (poly)) electrode. Potential-dependent surface coverage of iodide has been controlled on the basis of its reductive desoprtion in 0.1 M KOH alkaline media and its quantitative oxidation to aqueous iodates in acidic media. The Au (poly) electrode surface catalyzes the decomposition of H2O2 to O2. Specific adsorption of iodide on the Au electrode inhibits fully the catalytic decomposition and electrochemical oxidation of H2O2 as well as the adsorption of unknown impurities and the oxidative degradation of the electrode surface by H2O2. A quantitative characterization/detection of H2O2 at the iodide-modified Au (poly) electrode in the alkaline media has, thus, been achieved. Performance of the electrode toward the detection of H2O2 with respect to response time and sensitivity as well as operational stability has been evaluated. It has a sensitivity of 0.272 mA cm(-2) mM(-1) in amperometric measurements with a detection limit of 1.0 x 10(-5) M H2O2, and the response time to achieve 95% of the steady-state current is <20 s. The effect of O2 in the air-saturated solution can be minimized by subtracting the additional current for the O2 reduction. Experimental measurements were based upon cyclic voltametric and amperometric techniques.  相似文献   

4.
Supported Cu(II) polymer catalysts were used for the catalytic oxidation of phenol at 30 degrees C and atmospheric pressure using air and H(2)O(2) as oxidants. Heterogenisation of homogeneous Cu(II) catalysts was achieved by adsorption of Cu(II) salts onto polymeric matrices (poly(4-vinylpyridine), Chitosan). The catalytic active sites were represented by Cu(II) ions and showed to conserve their oxidative activity in heterogeneous catalysis as well as in homogeneous systems. The catalytic deactivation was evaluated by quantifying released Cu(II) ions in solution during oxidation, from where Cu-PVP(25) showed the best leaching levels no more than 5 mg L(-1). Results also indicated that Cu-PVP(25) had a catalytic activity (56% of phenol conversion when initial Cu(II) catalytic content was 200 mg L(Reaction)(-1)) comparable to that of commercial catalysts (59% of phenol conversion). Finally, the balance between activity and copper leaching was better represented by Cu-PVP(25) due to the heterogeneous catalytic activity had 86% performance in the heterogeneous phase, and the rest on the homogeneous phase, while Cu-PVP(2) had 59% and CuO/gamma-Al(2)O(3) 68%.  相似文献   

5.
Waste Ponkan mandarin (Citrus reticulata) peel was used as biosorbent to extract Ni(II), Co(II) and Cu(II) from aqueous solutions at room temperature. To achieve the best adsorption conditions the influence of pH and contact time were investigated. The isotherms of adsorption were fitted to the Langmuir equation. Based on the capacity of adsorption of the natural biosorbent to interact with the metallic ions, the following results were obtained 1.92, 1.37 and 1.31 mmol g(-1) for Ni(II), Co(II) and Cu(II), respectively, reflecting a maximum adsorption order of Ni(II)>Co(II)>Cu(II). The quick adsorption process reached the equilibrium before 5, 10 and 15 min for Ni(II), Co(II) and Cu(II), respectively, with maximum adsorptions at pH 4.8. In order to evaluate the Ponkan mandarin peel a biosorbent in dynamic system, a glass column was fulfilled with 1.00 g of this natural adsorbent, and it was fed with 5.00 x 10(-4)mol l(-1) of Ni(II) or Co(II) or Cu(II) at pH 4.8 and 3.5 ml min(-1). The lower breakpoints (BP(1)) were attained at concentrations of effluent of the column attained the maximum limit allowed of these elements in waters (>0.1 mg l(-1)) which were: 110, 100 and 130 bed volumes (V(effluent)/V(adsorbent)), for Ni(II), Co(II) and Cu(II), respectively. The higher breakpoints (BP(2)) were attained when the complete saturation of the natural adsorbent occurred, and the values obtained were: 740, 540 and 520 bed volumes for Ni(II), Co(II) and Cu(II), respectively.  相似文献   

6.
Separation with solvent extraction of Cu(II), Co(II) and Ni(II) from aqueous solution using N,N'-bis-(salicylaldehydene)-1,4-bis-(p-aminophenoxy)butane (H(2)L) as the new extractant has been studied. The new Schiff base, was synthesized by reaction of 1,4-bis-(p-aminophenoxy)butane and salicylaldehyde. Microanalytical data, elemental analysis, UV-vis (1)H NMR and (13)C NMR spectra and IR-spectra were used to confirm the structures. The extractability and selectivity of divalent cations was evaluated as a function of relationship between distribution ratios of the metal and pH or ligand concentration. Cu(+2) showed the highest extractability and selectivity at pH 7.8, whereas Ni(+2) and Co(+2) showed at pH 9.2. From the loaded organic phase, Cu(II), Co(II), Ni(II) stripping were carried out in one stage with aqueous acid solution including various concentrations of HCl. The stripping efficiency was found to be quantitative in case of 1.5M HCl. From quantitative evaluation of the extraction equilibrium data, it has been deduced that the complexes extracted are the simple 1:1 chelates, CuL, CoL, NiL.  相似文献   

7.
刘娟  王亮  郑长征 《材料导报》2012,26(2):83-85
由5-溴-2-羟基苯基乙酮与2-羟基苯甲酰肼在乙醇溶剂中反应得到5-溴-2-羟基苯基乙酮-2-羟基苯甲酰腙。以该酰腙、吡啶和氯化铜水热合成配合物(C15H11N2O3Br)Cu(C5H5N)。通过元素分析和X射线单晶衍射对其进行了表征,结果表明,配合物属单斜晶系,P21/c空间群,晶胞参数a=0.98929(19)nm,b=2.4177(5)nm,c=0.78755(16)nm,β=97.285(4)°,V=1.8685(6)nm3,Dc=1.745mg/m3,F(000)=984。荧光光谱表明,配体和配合物均具有荧光性,配合物在360.0~410.0nm处的荧光强度得到了增强。  相似文献   

8.
以Cl3CCOOH、1,10-菲罗啉为配体,以MnCl2·4H2O为金属离子盐,通过溶液蒸发法合成了具有纳米级金属骨架的三元配合物Mn(C2Cl3O2)Cl(C12H8N2)2。通过元素分析、红外光谱、X单晶衍射测得配合物属于单斜晶系,其空间群为P21/c,a=1.8155nm,b=1.0638nm,c=1.4685nm,β=112.9°,z=4,V=2.6110nm3。通过纳米化计算的方法,计算出总晶胞数、总原子数、及表面参数随粒径变化的关系,得出Mn(C2Cl3O2)Cl(C12H8N2)2最佳纳米化尺度为115nm。  相似文献   

9.
Waste sludge samples from different plants were tested for Cu(II) ion biosorption capacities with and without pre-treatment. Waste sludge from a paint industry wastewater treatment plant was found to perform better than the others after pre-treatment with 1% H(2)O(2). Powdered waste sludge (PWS) from the paint industry wastewater treatment plant was used for recovery of Cu(II) ions from aqueous solution by biosorption after pre-treatment with 1% H(2)O(2). Batch kinetics and isotherms of biosorption of Cu(II) ions were investigated at variable initial Cu(II) concentrations between 50 and 400 mg l(-1) with a PWS particle size of 64 microm. The pseudo-first and -second order kinetic models were used to correlate the experimental data. The kinetic constants were determined for both models and the second order kinetic model was found to be more suitable. The Langmuir, Freundlich and the generalized isotherm models were used to correlate the equilibrium biosorption data and the isotherm constants were determined. The Langmuir isotherm was found to fit the experimental data better than the other isotherms tested. The maximum biosorption capacity (116 mg g(-1)) of the pre-treated powdered waste sludge for Cu(II) ions was found to be superior as compared to the other biosorbents reported in literature.  相似文献   

10.
Bi-based layered materials, at present, serve as the potential candidates for the application of hydrogen storage. In our study, several 3D BiOCl microstructures, such as 2500 nm peonies, 1000 nm ball-flowers, and 3000 nm rough spheres are selectively and solvothermally prepared at 180 degrees C. These microstructures are composed of nanoplate with size of -1000 nm, -300 nm and -200 nm, respectively, the growth surface of which are all (001). Electrochemical hydrogen storage capacities of these microstructures are investigated in Ni/H battery model. It is found that rough spheres could store 0.52 wt% hydrogen related to a discharge capacity of 140 mAh x g(-1) at a current density of 50 mA x g(-1). The hydrogen storage of ball-flowers and peonies is 0.49 wt% (133 mAh x g(-1)) and 0.32 wt% (85 mAh x g(-1)). Brunauer-Emmett-Teller (BET) surface areas of rough spheres, ball-flowers and peonies are 35.0 m2 x g(-1), 33.7 m2 x g(-1), and 19.2 m2 x g(-1), respectively. In addition, the hydrogen storage study of BiOCI microstructure composed of nanoplates with exposed facet perpendicular to [221] axis indicates that hydrogen enters into the interlayer.  相似文献   

11.
Twelve homo- and hetero-nuclear copper(II) complexes of tetradentate Schiff base ligands containing N(4) donor sets have been prepared by employing several steps. The characterization and nature of bonding of the complexes have been deduced from elemental analysis, FT-IR, molar conductivity, magnetic moment measurements and thermal analysis. The three Schiff base ligands were further identified using (1)H and (13)C NMR spectra. All copper(II) complexes are 1:2 electrolytes as shown by their molar conductivities (Lambda(M)) in DMF and paramagnetic. The subnormal magnetic moment values of the di- and tri-nuclear complexes explained by a very strong anti-ferromagnetic interaction. The extraction ability of the ligands has been examined by the liquid-liquid extraction of selected transition metal (Mn(2+), Co(2+), Ni(2+), Cu(2+), Zn(2+), Pb(2+), Cd(2+), Hg(2+)) cations. The ligands show strong binding ability toward copper(II) ion. Furthermore the homo- and hetero-nuclear copper(II) complexes were each tested for their ability to catalyse the disproportionation of hydrogen peroxide in the presence of the added base imidazole.  相似文献   

12.
A 2(3) factorial design was employed to evaluate the quantitative removal of Cu(II) and Co(II) on glutaraldehyde-cross-linked chitosan from kinetic isotherms, using chitosan masses of 100 and 300mg and temperatures of 25 and 35 degrees C. The adsorption parameters were analyzed statistically using modeling polynomial equations and a cumulative normal probability plot. The results indicated the higher quantitative preference of the chitosan for Cu(II) in relation to Co(II). Increasing the chitosan mass decreases the adsorption/mass ratio (mol g(-1)) for both metals. The principal effect of the temperature did not show statistical importance. The adsorption thermodynamic parameters, namely Delta(ads)H, Delta(ads)G and Delta(ads)S, were determined. Exothermic and endothermic results were found in relation to a specific factorial design experiment. A comparison of Delta(ads)H values was made in relation to some metal-adsorbent interactions in literature. It is suggested that the adsorption thermodynamic parameters are determined by the influence of the principal and interactive experimental parameters and not by the temperature changes alone.  相似文献   

13.
Nanoscale (approximately 90 nm) Copper nitride (Cu3N) films are deposited on borosilicate glass and Si substrates by RF sputtering technique in the reactive environment of nitrogen gas. These films are irradiated with 200 MeV Au15+ ions from Pelletron accelerator in order to modify the surface by high electronic energy deposition of heavy ions. Due to irradiation (i) at incident ion fluence of 1 x 10(12) ions/cm2 enhancement of grains, (ii) at 5 x 10912) ions/cm2 mass transport on the films surface, (iii) at 2 x 10(13) ions/cm2 line-like features on Cu3N/glass and nanometallic structures on Cu3N/Si surface are observed. The surface morphology is examined by atomic force microscope (AFM). All results are explained on the basis of a thermal spike model of ion-solid interaction.  相似文献   

14.
One of the main requirements for Si-based ultrasmall device is atomic-order control of process technology. Here, we show the concept of atomically controlled processing for group IV semiconductors based on atomic-order surface reaction control in Si-based CVD epitaxial growth. Self-limiting formation of 1-3 atomic layers of group IV or related atoms after thermal adsorption and reaction of hydride gases on Si(1-x)Gex(100) (x = 0-1) surface are generalized based on the Langmuir-type model. Moreover, Si-based epitaxial growth on N, P or C atomic layer formed on Si(1-x)Gex(100) surface is achieved at temperatures below 500 degrees C. N atoms of about 4 x 10(14) cm(-2) are buried in the Si epitaxial layer within about 1 nm thick region. In the Si(0.5)Ge(0.5) epitaxial layer, N atoms of about 6 x 10(14) cm(-2) are confined within about 1.5 nm thick region. The confined N atoms in Si(1-x)Gex preferentially form Si-N bonds. For unstrained Si cap layer grown on top of the P atomic layer formed on Si(1-x)Gex(100) with P atomic amount of below about 4 x 10(14) cm(-2) using Si2H6 instead of SiH4, the incorporated P atoms are almost confined within 1 nm around the heterointerface. It is found that tensile-strain in the Si cap layer growth enhances P surface segregation and reduces the incorporated P atomic amount around the heterointerface. Heavy C atomic-layer doping suppresses strain relaxation as well as intermixing between Si and Ge at the nm-order thick Si(1-x)Gex/Si heterointerface. These results open the way to atomically controlled technology for ULSIs.  相似文献   

15.
Erbium doped Al2O3 thin films were fabricated on quartz substrates in dip-coating process by sol-gel method, using the aluminum isopropoxide [Al(OC3H7)3]-derived AlOOH sols with the addition of erbium nitrate [Er(NO3)3 x 5H2O]. The as-deposited films, which erbium concentration was between 20 and 43 mol%, were annealed in air from 600 to 1200 degrees C. The phase structure was detected by X-ray diffraction (XRD) and the PL spectra in the wavelength range of 1400-1700 nm were investigated by spectrophotometer, which was exited by a 760 nm semiconductor LD. The PL spectrum shows a broadband extending from 1.430 to 1.670 microm and centered at 1.55 microm, corresponding to the intra-4f transition between the first excited (4I(13/2)) and the ground state (4I(15/2)) of Er3+. The full width at half maximum (FWHM) of PL peaks increase from 60 to 100 nm with temperature increased from 600 to 1200 degrees C.  相似文献   

16.
Li X  Meng G  Xu Q  Kong M  Zhu X  Chu Z  Li AP 《Nano letters》2011,11(4):1704-1709
We report on the controlled growth of germanium (Ge) nanostructures in the form of both nanowire (NW) and nanotube (NT) with ultrahigh aspect ratios and variable diameters. The nanostructures are grown inside a porous anodic aluminum oxide (AAO) template by low-temperature chemical vapor deposition (CVD) assisted by an electrodeposited metal nanorod catalyst. Depending on the choice of catalytic metals (Au, Ni, Cu, Co) and germane (GeH(4)) concentration during CVD, either Ge NWs or NTs can be synthesized at low growth temperatures (310-370 °C). Furthermore, Ge NWs and NTs with two or more branches can be grown from the same stem while using AAO with branched channels as templates. Transmission electron microscopy studies show that NWs are single crystalline and that branches grow epitaxially from the stem of NWs with a crystalline direction independent of diameter. As-grown NTs are amorphous but can crystallize via postannealing at 400 °C in Ar/H(2) atmosphere, with a wall thickness controllable between 6 and 18 nm in the CVD process. The yield and quality of the NTs are critically dependent on the choice of the catalyst, where Ni appears the best choice for Ge NT growth among Ni, Cu, Co, and Au. The synthesis of structurally uniform and morphologically versatile Ge nanostructures may open up new opportunities for integrated Ge-nanostructure-based nanocircuits, nanodevices, and nanosystems.  相似文献   

17.
Selective electrochemical detection of As(III) using a highly sensitive platform based on a Au(111)-like surface is described. The Au(111)-like surface was achieved for the first time by the partial reductive desorption of n-butanethiol (n-BT) from polycrystalline gold (poly-Au), on which a self-assembled monolayer (SAM) of n-BT was formed previously, which allows the selective blockage of the Au(100) and Au(110) surface domains by n-BT while the Au(111) domain remains bare. Square wave anodic stripping voltammetry (SWASV) using the Au(111)-like poly-Au electrode confirms the successful detection of As(III) without any interference from Cu(II). The fabricated electrode is stable and highly sensitive even in the presence of Cu(II), and it shows a linear response for As(III) up to 15 μM. The detection limit (S/N = 3) toward As(III) is 0.28 ppb, which is far below the guideline value given by World Health Organization (WHO). The electrode was applicable for the analysis of spiked arsenic in tap water containing a significant amount of various other ion elements. The results indicate that the Au(111)-like poly-Au electrode could be promising for the electrochemical detection of trace level of As(III) in real samples without any interference from Cu(II).  相似文献   

18.
Self-assembled monolayers (SAMs) formed by the adsorption of 4-fluorobenzenethiol (4-FBT) and 4-fluorobenzenemethanethiol (4-FBMT) on Au(111) were examined by scanning tunneling microscopy (STM) to understand the effect of a flexible methylene spacer between the sulfur head-group and phenyl group and the effect of solution temperature on the formation and structure of the SAMs. Although the adsorption of 4-FBT on Au(111) at room temperature for 24 h generated only disordered phase SAMs containing gold adatom islands, 4-FBT at 75 degrees C for 2 h formed mixed SAMs: disordered phases and ordered (2 x 12√(2))R10 degrees superlattice with a rectangular unit cell containing six adsorbed molecules. On the other hand, SAMs formed from 4-FBMT, with a methylene spacer, at room temperature for 24 h on Au(111) had irregularly ordered phases containing uniformly distributed VIs with lateral dimensions of 2-5 nm; SAMs formed from 4-FBMT at 75 degrees C for 2 h were composed of slightly improved ordered phases and larger VIs with lateral dimensions of 5-12 nm as a result of Ostwald ripening. From this study, we found that the methylene spacer plays an important role in controlling the structure of SAMs formed from p-substituted fluorinated aromatic thiols.  相似文献   

19.
The enhanced middle-infrared light transmission through Au/SiO(x)N(y)/Au aperture arrays by changing the refractive index and the thickness of a dielectric layer was studied experimentally. The results indicated that the transmission spectra was highly dependent on the refractive index and the thickness of SiO(x)N(y). We found that the transmission peaks redshifted regularly along with the refractive index from 1.6 to 1.8, owing to the role of surface plasmon polaritons (SPP) coupling in the Au/SiO(x)N(y)/Au cascaded metallic structure. Simultaneously, a higher transmission efficiency and narrower transmission peak was obtained in Au/SiO2.1N0.3/Au cascaded metallic structure with small refractive index (1.6) than in Au/SiO0.6N1/Au cascaded metallic structure with large refractive index (1.8). When the thickness of SiO(x)N(y) changes from 0.2 to 0.4 microm, the shape of transmission spectra exhibits a large change. It was found that a higher transmission efficiency and narrower transmission peak was obtained in Au/SiO(x)N(y)/Au cascaded metallic structure with a thin dielectric film (0.2 microm), with the increase of SiO(x)N(y) film's thickness, the transmission peak gradually widened and disappeared finally. This effect is useful in applications of biochemical sensing and tunable integrated plasmonic devices in the middle-infrared region.  相似文献   

20.
Nanometer-sized spherule soot precursor particles have been collected by thermophoretic sampling from the interior of a laminar diffusion flame and mass analyzed by laser microprobe mass spectrometry. Mass spectra of the precursor particles formed in an ethene diffusion flame have indicated the presence of polycyclic aromatic hydrocarbons (PAHs) in the m/z range of 202-300 and higher mass peaks extending out to m/z 472. The mass resolution of the time-of-flight mass spectrometer used did not provide conclusive identification of PAHs because of ambiguities in assignment for the relative amounts of carbon and hydrogen (C(x)H(y)) for each PAH peak and the possibilities of spectral interferences. To determine the chemical formula that can be assigned to each molecular ion peak, an isotopically pure deuterated ethene (C(2)D(4)) fuel was burned in place of normal ethene (C(2)H(4)) in the diffusion flame. For the normal ethene fuel, mass peaks tentatively identified as C(16)H(10) to C(38)H(16) were obtained. Accordingly, deuterated PAH peaks ranging from C(16)D(10) to C(38)D(16) were found when C(2)D(4) was burned. These m/z values correspond to molecular ion, M?(+), peaks for an array of PAH compounds. The deuterated PAH mass peaks (C(x)D(y)) were entirely consistent with a mass shift of y mass units with respect to the normal PAH mass peaks. The carbonaceous particle aggregates collected from the upper flame region have mass peaks characteristic of C(x)(+) and C(x)H(+), while the deuterated soot has C(x)(+) and C(x)D(+). The deuterated ethene experiment has verified the identities of x and y in the PAH (C(x)H(y)) compounds present in the precursor particle samples. No prior experiment using pure deuterium-based fuel as a combustion diagnostic to form aerosol-containing deuterated PAH compounds has been reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号