首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A theoretical model that incorporates the concept of the cohesive interface approach for the debonding analysis of reinforced concrete beams strengthened with externally bonded fiber reinforced polymer (FRP) strips is presented. The cohesive interface concept is adopted for modeling of the debonding process near the critical adhesive-concrete interface, whereas the adhesive layer itself is modeled as a two-dimensional elastic medium. Thus, the stress and deformation fields within the adhesive layer, the coupling between the shear and normal stresses and, especially, their influence on the tractions across the cohesive interface are taken into account. The nonlinear relations between the tractions and the displacement jumps across the cohesive interface are derived using a potential function and account for the peeling effects and for the coupling between the shear-slip and the peeling-separation laws. Numerical results that examine the capabilities of the model, provide insight into the stability characteristics of the debonding mechanism, and highlight some aspects of the debonding problem are presented. A summary and conclusions close the paper.  相似文献   

2.
This work presents the results of an experimental research program, carried out at the Technical University of Catalonia, to study the debonding behavior of carbon fiber-reinforced polymers (CFRPs) used to strengthen beams in bending. The research is a part of a program that aims to study the strengthening of concrete bridges (both monolithic and segmental) using CFRPs. The overall objective of this paper is to present the results obtained from bond tests performed on material-scale specimens and full-scale tests performed on monolithic and segmental beams. A normalized test is proposed to obtain a more reliable estimate of the debonding strain of CFRPs, which may govern the design of CFRP-strengthened concrete structures. The test is proposed to supplement available design models, as the formula of km included in ACI 440.2R-02 by ACI Committee 440. The results from the tests are checked with the data obtained in large-scale tests, representative of actual bridges. The reported values are significantly lower than those reported in other tests with specimens of a lower size. An explanation is that a size effect can exist, which affects the debonding failure mechanisms. Extrapolation of results—from models calibrated with specimens of reduced dimensions to real structures—may lead to unsafe predictions of the debonding strain. In conclusion, the proposed simplified bond test more accurately estimates the load bearing capacity, which in practical cases is not perfectly well covered by the existing models; for instance when discontinuities (cracks or joints) are present in the concrete where the CFRP is bonded.  相似文献   

3.
For concrete beams and slabs strengthened with bonded fiber reinforced plastic (FRP) plates, plate debonding from the concrete substrate is a common failure mode. In this paper, the debonding process is modeled as the propagation of a crack along the concrete/adhesive interface, with frictional shear stress acting behind the crack tip. Crack propagation is taken to occur when the net energy release of the system equals the interfacial fracture energy. The analysis is first performed for the special case with constant shear stress along the debonded interface, and then for the general case with slip softening in the debonded zone. From the results, a direct correspondence between energy-based and strength-based analyses can be established for arbitrary softening behavior along the interface. Specifically, through the proper definition of an effective interfacial shear strength, the conventional strength-based approach can be employed to give the same results as the much more complicated energy-based analysis. Also, based on the relation between the effective shear strength and other material parameters, it is possible to explain the very high interfacial shear stresses observed in experimental measurements. As an application example, distribution of plate stress and interfacial shear stress for the linear softening case is derived. The model results are found to be in good agreement with experimental measurements, showing that the simple linear softening model can describe the debonding process in real material systems.  相似文献   

4.
The technique of bonding fiber-reinforced plastic (FRP) plates on the tensile side of concrete members has been proved to be an effective method for structural strengthening. For a RC beam strengthened with FRP plates, failure may occur by concrete cover separation near the plate end, or crack-induced debonding initiated by an opening crack away from the plate end. Experimental investigations have shown that tapering of the FRP plate at its ends is effective in reducing the stress concentrations and increasing the loading for plate end failure to occur. However, with reduced averaged thickness of the tapered plate, crack-induced debonding is also easier to occur. To optimize plate tapering in practical designs, an approach to analyze crack-induced debonding of tapered FRP plates is required. In the present investigation, FRP debonding is first studied with the finite-element method. In the analysis, a three-parameter model is employed for the shear slip relation between concrete and the FRP plate. Based on the findings from FEM analysis, simplifying assumptions are derived and an analytical model is developed for calculating the stresses in the FRP plate and along the concrete-to-FRP interface. The analytical stress distributions show good agreement with those from the FEM analysis. Using the analytical model, the effect of FRP tapering is quantitatively assessed. Also, the effects of various parameters on the ultimate failure load are simulated.  相似文献   

5.
The failure mechanisms of reinforced concrete (RC) members change due to the application of externally bonded fiber-reinforced polymer reinforcement. Although an extensive literature is available describing the failure mechanisms of poststrengthened flexural systems, brittle failure modes caused by bond failure, such as midspan debonding and end peeling, need to be further investigated in order to identify and quantify the fracture processes that result in bond failure. Simplified experimental tests have been designed to idealize the bond between the laminate and the RC member. However, it is unclear how the simplified test results can be related to the actual flexural debonding failures. This paper investigates and compares two bond failure tests: a simplified test (or simple shear test) and a recently proposed shear/normal test. After discussing the characteristics of both tests and how they relate to the midspan debonding and end peeling failures, the shear/normal test is studied in more detail using a nonlinear finite-element fracture mechanics program. The program accounts for cohesive localized and distributed concrete crack damage and is capable of describing the geometrical discontinuities that induce different brittle failure mechanisms. The numerical results compare well with available experimental data and help explain the crack formation and propagation pattern up to specimen failure. Parametric studies are presented to elucidate the influence of different material parameters on the failure mechanisms.  相似文献   

6.
The nonlinear behavior of masonry arches strengthened with externally bonded composite materials is investigated. A finite-element (FE) formulation that is specially tailored for the nonlinear analysis of the strengthened arch is developed. The FE formulation takes into account material nonlinearity of the masonry construction and high-order kinematic relations for the layered element. Implementation of the above concept in the FE framework reduces the general problem to a one-dimensional nonlinear formulation in polar coordinates with a closed-form representation of the elemental Jacobian matrix (tangent stiffness). A numerical study that examines the capabilities of the model and highlights various aspects of the nonlinear behavior of the strengthened masonry arch is presented. Emphasis is placed on the unique effects near irregular points and the nonlinear evolution of these effects through the loading process. A comparison with experimental results and a discussion of the correlating aspects and the ones that designate needs of further study are also presented.  相似文献   

7.
The objective of this paper is to develop a new mechanistic understanding of moisture affected debonding failures in carbon fiber reinforced polymer (CFRP) plated concrete systems by mechanically testing accelerated moisture conditioned mesoscale peel and shear interface fracture specimens. Central to the investigation is the use of interface fracture toughness as the quantification parameter of the CFRP-epoxy-concrete trilayer system, which is considered a bond property, to analyze, compare, and correlate physical observations. Results have shown that fracture toughness of the CFRP bonded concrete systems significantly degrades, and its value becomes asymptotic with increasing moisture ingress. This asymptotic behavior is associated with certain moisture concentration levels as predicted by a three-dimensional moisture diffusion simulation. The generally observed debonding mode by concrete delamination for the dry specimens changes to an epoxy/concrete interface separation mode for the wet specimens. Finite element fracture computation, mixed-mode characterization, and kink criterion implementation synergistically suggest that the interface separation mode is attributed to an interfacial material toughening and an interface weakening mechanism as a consequence of moisture diffusion.  相似文献   

8.
A computational constitutive model was developed to predict damage and fracture failure of asphalt concrete mixtures. Complex heterogeneity and inelastic mechanical behavior are addressed by the model by using finite-element methods and elastic–viscoelastic constitutive relations. Damage evolution due to progressive cracking is represented by randomly oriented interface fracture, which is governed by a newly developed nonlinear viscoelastic cohesive zone model. Computational simulations demonstrate that damage evolution and failure of asphalt concrete mixtures is dependent on the mechanical properties of the mixture. This approach is suitable for the relative evaluation of asphalt concrete mixtures by simply employing material properties and fracture properties of mixture components rather than by performing expensive laboratory tests recursively, which are typically required for continuum damage mechanics modeling.  相似文献   

9.
A new three-dimensional finite-element model of two-dimensional, triaxially braided composites is presented in this paper. This mesoscale modeling technique is used to examine and predict the deformation and damage observed in tests of straight-sided specimens. A unit cell-based approach is used to consider the braiding architecture and the mechanical properties of the fiber tows, the matrix, and the fiber tow-matrix interface. A 0°/±60° braiding configuration has been investigated by conducting static finite-element analyses. Failure initiation and progressive degradation has been simulated in the fiber tows by using the Hashin failure criteria and a damage evolution law. The fiber tow-matrix interface was modeled by using a cohesive zone approach to capture any fiber-matrix debonding. By comparing the analytical results with those obtained experimentally, the applicability of the developed model was assessed and the failure process was investigated.  相似文献   

10.
The behavior of reinforced concrete slabs strengthened with fully or partially bonded (delaminated) circular patches is analytically investigated. The model derived follows the concepts of the high-order theory, and uses variational principles, equilibrium, and compatibility requirements, the constitutive equations of reinforced concrete (RC) members and composite laminates, and the fracture-mechanics concept of energy release rate. A substructuring approach, in which the localized response of the strengthened area is modeled assuming circular axis-symmetric behavior, is adopted. The investigated substructure consists of fully bonded and delaminated regions, where the delaminated faces can slip horizontally one with respect to another. A distinction is made between delaminations with contact, in which the delaminated faces accommodate vertical normal compressive stresses, and delaminations without vertical contact, in which the cracked interface is free of stresses on any kind. The field and governing equations of the fully bonded, delaminated (with or without contact), and unstrengthened regions, as well as the boundary/continuity conditions that combine these regions together, are derived. The influence of the existence of a delaminated area at the center of the slab and the effect of its size on the localized and overall behavior are investigated numerically. The elastic energy release rates associated with the growth of the delaminated area and their influence on the failure mode of the strengthened structure are also studied. The investigation reveals that the formation of a delaminated region reduces the composite action of the RC slab and the bonded patch, is involved with stress concentrations near the edge of the region, and may trigger an unstable delamination failure of the strengthened slab.  相似文献   

11.
The problem of end-plate debonding of the external reinforcement in strengthened concrete beams is analyzed in this paper. As experimentally observed, this mode of failure is highly brittle and poses severe limitations to the efficacy of the strengthening technique. A numerical analysis of the full-range behavior of strengthened beams in bending is herein proposed to study the stages of nucleation and propagation of interfacial cracks between the external reinforcement and the concrete substrate. This is achieved by modeling the nonlinear interface behavior according to a cohesive law accounting for Mode Mixity. The numerically obtained load versus midspan deflection curves for three- or four-point bending beams show that the process of end-plate debonding is the result of a snap-back instability, which is fully interpreted in the framework of the Catastrophe Theory. To capture the softening branch with positive slope, the interface crack-length control scheme is proposed in the numerical simulations. The results of a wide parametric study exploring the effect of the relative reinforcement length, the mechanical percentage of fiber-reinforced polymer sheets, the beam slenderness, and the ratio between Mode II and Mode I fracture energies are collected in useful diagrams. Finally, an experimental assessment of the proposed model completes the paper.  相似文献   

12.
In this study, numerical procedures are proposed to predict the structural behavior of concrete members strengthened with fiber-reinforced polymeric (FRP) sheets or plates. The concept of damage band or crack band is introduced and used for predicting the debonding failure of the concrete-epoxy interface formed when FRP sheets or plates are externally bonded to a concrete substrate. In the crack band approach, all the processes taking place during the failure of a concrete-epoxy interface are smeared in a band of fixed width. This makes the approach attractive from a modeling point of view since continuum theories, along with softening relations, can be used to model the damage which causes debonding of the interface. In order to validate this approach, numerical predictions, using the concept of crack band, are compared against experimental results obtained from tests of concrete blocks and reinforced concrete beams strengthened with FRP. In particular, the capability of the proposed numerical approach to predict the load-displacement response, strain distributions, failure sequences, damage distribution, and failure mechanisms experimentally observed is verified. Results presented in this study indicate that the concept of crack band is appropriate when modeling concrete-epoxy interfaces under general states of stresses.  相似文献   

13.
The last few years have witnessed a wide use of externally bonded fiber reinforced polymer (FRP) sheets for strengthening existing reinforced and prestressed concrete structures. The success of this strengthening method relies on the effectiveness of the load-transfer between the concrete and the FRP. Understanding the stress transfer and the failure of the concrete–FRP interface is essential for assessing the structural performance of strengthened beams and for evaluating the strength gain. This paper describes an experimental investigation of the interfacial bond behavior between concrete and FRP. The strain distributions in concrete and FRP are determined using an optical technique known as digital image correlation. The results confirm that the debonding process can be described in terms of crack propagation through the interface between concrete and FRP. The data obtained from the analysis of digital images was used to determine the interfacial material behavior for the concrete–FRP interface (stress versus relative displacement response) and the fracture parameter GF (fracture energy). The instability in the test response at failure is shown to be the result of snapback, which corresponds with the elastic unloading of the FRP as the load carrying ability of the interface decreases with increasing slip.  相似文献   

14.
Simple Model for Bond Behavior of Masonry Elements Strengthened with FRP   总被引:1,自引:0,他引:1  
The aim of the present paper is the development of a simple procedure for the analysis of the bond behavior of fiber-reinforced polymer (FRP) sheets or plates externally applied to masonry supports for the strengthening or repair of masonry constructions. The procedure allows evaluation of the bond strength and the fracture energy developed during the debonding process through simple formulas based on a few parameters, evaluated either by standard tests performed on the materials making up the support and the strengthening system or by theoretical considerations. A brief discussion on the main experimental evidence and the theoretical models provided by the literature is also reported in this paper. The comparison between the theoretical results obtained by applying the proposed procedure and the experimental data deduced from literature is carried out.  相似文献   

15.
Strengthening two-way slabs by using fiber-reinforced polymer (FRP) is experimentally and analytically evaluated. Results show that the punching capacity of two-way slabs can increase to up to 40% greater than that of a reference specimen. A three-dimensional FEM program called 3D CAMUI, which was developed at Hokkaido University, was used to simulate the experimental slabs. Very good agreement is obtained in load-carrying capacity and modes of failure. An analytical model based on the numerical simulation, which discloses the mechanism of punching shear strength enhancement by FRP strengthening, is proposed to predict the punching shear strength of two-way slabs externally strengthened with FRP sheets.  相似文献   

16.
It has been demonstrated, through laboratory investigations and various field projects, that the external bonding of fiber- reinforced polymer (FRP) laminates is an effective technique for the structural enhancement of reinforced concrete slabs. In such applications, failure is generally governed by debonding of the FRP laminate. Nevertheless, numerical simulations to date of FRP-strengthened slabs have usually been based on the assumption of full bond between the concrete and FRP. In this study, the interfacial behavior between the FRP laminates and the concrete substrate is accounted for by introducing appropriate bond-slip models for the interface in a nonlinear finite-element analysis of FRP-strengthened two-way slabs. The numerical model is capable of simulating slabs strengthened in shear or in flexure; it can be applied to arbitrary FRP configurations, and can also accommodate both passive as well as prestressed FRP strengthening schemes. Results are presented in terms of load-deflection relationships, ultimate load capacities, failure modes, and interfacial slip and stress distributions. When compared to test results reported in the literature, the analysis is shown to lead to excellent predictions in that, for the entire set of FRP-strengthened specimens considered, the average of the numerical-to-experimental load capacity ratios is 0.966, with a standard deviation of 0.066. Furthermore, in all cases when FRP debonding was observed experimentally, the analysis correctly predicted the mode of failure.  相似文献   

17.
The finite-element method (FEM) has been employed to study the structural behavior of the fiber-reinforced polymer (FRP) bridge deck. The numerical results were verified with the field-test results provided by New York State Department of Transportation. Fully coupled thermal-stress analyses were conducted using the FEM to predict the failure mechanisms and the “fire resistance limit” of the superstructure under extreme thermal loading conditions. Furthermore, damage simulations of the FRP deck as a result of snow and ice plowing process were performed to investigate any possibility of bridge failure after damage occurs. Thermal simulations showed that FRP bridge decks are highly sensitive to the effect of elevated temperatures. The FRP deck approached the fire resistance limit at early stages of the fire incident under all cases of fire scenarios. The damage simulations due to the snow plowing showed minimal possibility of bridge failure to take place under the worst-case damage scenario when the top 5 mm of the FRP deck surface was removed. The results of both phases of simulations provide an insight into the safety and the reliability of the FRP systems after the stipulated damage scenarios were considered. Moreover, this paper provides discussions concerning the recommended immediate actions necessary to repair the damaged region of FRP deck panels and possible use of the bridge after the damage incident.  相似文献   

18.
Three-Parameter Model for Debonding of FRP Plate from Concrete Substrate   总被引:1,自引:0,他引:1  
Concrete beams retrofitted with bonded fiber reinforced plastic (FRP) plates often fail by debonding of the plate from the concrete surface. To predict the failure load in design, a proper debonding model is required. As debonding is a nonlinear process involving material softening, it can be analyzed once the interfacial shear (τ) versus sliding (s) relationship is known. Recent experimental results indicate that the simplest τ-s relationship should involve three parameters: the maximum shear stress for debonding to initiate, the initial residual stress right after debonding occurs, and a parameter governing the reduction of shear stress with sliding. In this paper, a FRP debonding model based on these three parameters is developed. The applicability of the model is verified through comparison with experimental results. Through a systematic parametric study, the effect of various material and geometric properties on the debonding process is investigated. Implications to the design of FRP strengthened members are highlighted.  相似文献   

19.
To improve the fiber-reinforced polymer (FRP)/concrete bond capacity, this paper presents a new anchoring approach with the gluing of precast fiber-reinforced cementitious composites (FRCC) plate on top of the FRP sheets. In order to measure the improvement in ultimate load and deformation capacity and to study the failure mechanisms around the anchored area, the direct shear bond test is performed on concrete prisms with bonded FRP. Several sets of tests have been carried out with anchoring plates of different FRCC compositions and lengths. Comparison with the control sample shows that the installation of FRCC plate can significantly increase both the bond and deformation capacities (by up to 100%). On the basis of the shear bond test, two types of FRCC plate materials were found to be particularly effective and were selected for strengthening of beam members to be tested under four-point bending. Comparison with control members (without anchor) and those with conventional U-shaped FRP anchors indicates that both the ultimate load and central deflection can be improved by the new anchoring method.  相似文献   

20.
The use of fiber-reinforced polymer (FRP) for strengthening concrete structures has grown remarkably during the past few years. In spite of exhibiting superior properties, the safety of usage is questionable as FRP undergoes brittle debonding failure. The aim of this study is to review and compare the existing research on bond failure between FRP and concrete substrates. Among the different failure modes, there has been little research in terms of intermediate crack-induced interfacial debonding and fewer strength models are developed for predicting such failures. Conducting a simple shear test on the FRP bonded to a concrete substrate can simulate this type of failure mode. Twelve specimens were tested to study the influence of concrete strength and the amount of FRP on the ultimate load capacity of a FRP–concrete bond under direct shear. Existing experimental work was collected from the literature and consists of an extensive database of 351 concrete prisms bonded to FRP and tested in direct shear tests. The analytical models from various sources are applied to this database and the results are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号