首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Quality-of-service mechanisms in all-IP wireless access networks   总被引:7,自引:0,他引:7  
In this paper, we focus on resource reservation protocol (RSVP)-based quality-of-service (QoS) provisioning schemes under Internet protocol (IP) micromobility. We consider QoS provisioning mechanisms for on-going RSVP flows during handoff. First, the rerouting of RSVP branch path at a crossover router (CR) at every handoff event can minimize resource reservation delays and signaling overheads, and in turn the handoff service degradation can be minimized. We show that RSVP branch path rerouting scheme could give a good tradeoff between the resource reservation cost and the link usage. Second, the new RSVP reservation can be made along the branch path toward the CR via a new base station in advance, while the existing reservation path is maintained, and in turn the on-going flow can be kept with the guaranteed QoS. We also show that seamless switching of RSVP branch path could provide the QoS guarantee by adaptively adjusting the pilot signal threshold values. Third, during RSVP resource reservation over wireless link, dynamic resource allocation scheme is used to give a statistical guarantee on the handoff success of on-going flows. We finally obtain the forced termination probability of guaranteed service flows, the average system time of best effort flows by using a transition rate matrix approach.  相似文献   

2.
In this paper, we study the multichannel exposed terminal problem in multihop wireless networks. We propose a multichannel medium access control (MAC) protocol, called multichannel MAC protocol with hopping reservation (MMAC‐HR), to resolve the multichannel exposed terminal problem. MMAC‐HR uses two radio interfaces; one interface is fixed over the control channel, and the other interface switches dynamically between data channels. The fixed interface supports broadcast information and reserves a data channel for any data transmission. The switchable interface, on other hand, is for data exchanges and follows independent slow hopping without requiring clock synchronization. In addition, the proposed protocol is a distributed one. By using the ns‐2 simulator, extensive simulations are performed to demonstrate that MMAC‐HR can enhance the network throughput and delay compared with existing multichannel MAC protocol. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
Wireless sensor networks (WSNs), has been under development for a while by the academia and industry. Due to limited computational power, a typical sensor node may experience operational challenges. Moreover, mobility has become an important feature since emergency and healthcare related applications are evolving in WSNs. Consideration of mobile nodes in WSNs introduce new challenges for the designers. In this paper, an enhanced version of T-MAC protocol (a well-known medium access control protocol in WSNs) known as MT-MAC is proposed. Using the capturing fluctuation in RSSI and LQI values of the received SYNC packets, MT-MAC solves high packet drop ratio in T-MAC. By detecting the mobility, a mobile node softly handover to a new virtual cluster without losing connection with other nodes. The performance of the proposed solution is then compared with T-MAC, S-MAC as well as other well-known mobility-aware MAC (MS-MAC) protocol. The simulation results show that the proposed protocol significantly increases the throughput and packet delivery ratio of T-MAC in exchange for a small increase in power consumption. Compared to MS-MAC protocol, the proposed approach can reduce power consumption by 20–65%, and achieve slightly higher packet delivery ratio.  相似文献   

4.
In multi-hop wireless networks, the optimal medium access control (MAC) design is challenging, partially due to the time-varying nature of the PHY-layer communication channels and the network topology. In this paper, we take a utility maximization approach to study fair MAC design towards QoS provisioning. To this end, we first identify two key challenges of wireless access control, namely the topology dependency and the channel dependency, therein. Based on the observation that the topology change and channel variation occur on different time scales, we decompose the utility maximization to two phases: a "global" optimization phase addresses the topology dependency, and arbitrates fair channel access across the links by adapting the persistence probability to achieve long-term fairness, and a "local" optimization phase deals with the channel dependence, and determines the transmission duration based on local channel conditions while maintaining short-term fairness. Observing that the MAC throughput depends on the realizations of channel contention in random access networks, we use stochastic approximation to investigate in depth the MAC design with the adaptive persistence mechanism in the global phase. Using Lyapunov's Stability Theorems and LaSalle's Invariance Theorem, we establish the stability of the proposed algorithm for the global phase and analyze the fairness under (omegaoarr, kappa)-fair utility functions. Our findings reveal that under the large network assumption, there exists a single equilibrium point for the proposed (omegaoarr, kappa)-fair MAC algorithm provided that kappa > 1. We also present the solution to the local optimization phase under general fairness constraints.  相似文献   

5.
Recent developments in sensor technology, as seen in Berkeley’s Mica2 Mote, Rockwell’s WINS nodes and the IEEE 802.15.4 Zigbee, have enabled support for single-transceiver, multi-channel communication. The task of channel assignment with minimum interference, also named as the 2-hop coloring problem, allows repetition of colors occurs only if the nodes are separated by more than 2 hops. Being NP complete, development of efficient heuristics for this coloring problem is an open research area and this paper proposes the Dynamic Channel Allocation (DCA) algorithm as a novel solution. Once channels are assigned, a Medium Access Control protocol must be devised so that channel selection, arbitration and scheduling occur with maximum energy savings and reduced message overhead, both critical considerations for sensor networks. The contribution of this paper is twofold: (1) development and analysis of the DCA algorithm that assigns optimally minimum channels in a distributed manner in order to make subsequent communication free from both primary and secondary interference and (2) proposing CMAC, a fully desynchronized multi-channel MAC protocol with minimum hardware requirements. CMAC takes into account the fundamental energy constraint in sensor nodes by placing them in a default sleep mode as far as possible, enables spatial channel re-use and ensures nearly collision free communication. Simulation results reveal that the DCA consumes significantly less energy while giving a legal distributed coloring. CMAC, our MAC protocol that leverages this coloring, has been thoroughly evaluated with various modes in SMAC, a recent protocol that achieves energy savings through coordinated sleeping. Results show that CMAC obtains nearly 200% reduction in energy consumption, significantly improved throughput, and end-to-end delay values that are 50–150% better than SMAC for our simulated topologies.  相似文献   

6.
Wireless sensor networks (Wsns) tend to be highly optimized due to severely restricted constraints. Various medium access control (Mac) protocols forWsns have been proposed, being specially tailored to a target application. This paper proposes a taxonomy for the different mechanisms employed in those protocols. The taxonomy characterizes the protocols according to the methods implemented to handle energy consumption, quality of service and adaptability requirements. We also present an overview of the transceptors found inWsns, identifying how events on communication affect the energy consumption. Based on the taxonomy, we classify existingMac protocols. Finally, we discuss challenging trends inMac protocols forWsns, such as security issues and software radios.  相似文献   

7.
The integration of MIMO technology in WLANs has recently been the locus of extensive research. The main objectives of this technology are to improve channel reuse and or reduce energy consumption. In this article, we give an overview of MIMO systems and their use in WLANs. We highlight the different types of gains that MIMO offers and then discuss some of the work that has been done on MAC design. We conclude by outlining several open issues thai must be addressed for MIMO-based systems.  相似文献   

8.
The problem of medium access control in wireless sensor networks   总被引:5,自引:0,他引:5  
In this article we revisit the problem of scheduled access through a detailed foray into the questions of energy consumption and throughput for MAC protocols in wireless sensor networks. We consider a static network model that rules out simultaneous transmission and reception by any sensor node and consequently requires partitioning of nodes into disjoint sets of transmitters and receivers at any time instant. Under the assumption of circular transmission (reception) ranges with sharp boundaries, a greedy receiver activation heuristic is developed relying on the network connectivity map to determine distinct receiver groups to be activated within disjoint time intervals. To conserve limited energy resources in sensor networks, the time allocation to each receiver group is based on the residual battery energy available at the respective transmitters. Upon activating each receiver group separately, the additional time-division mechanism of group TDMA is imposed to schedule transmissions interfering at the non-intended destinations within separate fractions of time in order to preserve the reliable feedback information. The two-layered time-division structure of receiver activation and group TDMA algorithms offers distributed and polynomial-time solutions (as required by autonomous sensor networks) to the problems of link scheduling as well as energy and throughput-efficient resource allocation in wireless access. The associated synchronization and overhead issues are not considered in this article.  相似文献   

9.
Wireless Sensor Networks (WSN) are mainly characterized by dense deployment of sensor nodes which collectively transmit information about sensed events to the sink. Due to the spatial correlation between sensor nodes subject to observed events, it may not be necessary for every sensor node to transmit its data. This paper shows how the spatial correlation can be exploited on the Medium Access Control (MAC) layer. To the best of our knowledge, this is the first effort which exploits spatial correlation in WSN on the MAC layer. A theoretical framework is developed for transmission regulation of sensor nodes under a distortion constraint. It is shown that a sensor node can act as a representative node for several other sensor nodes observing the correlated data. Based on the theoretical framework, a distributed, spatial Correlation-based Collaborative Medium Access Control (CC-MAC) protocol is then designed which has two components: Event MAC (E-MAC) and Network MAC (N-MAC). E-MAC filters out the correlation in sensor records while N-MAC prioritizes the transmission of route-thru packets. Simulation results show that CC-MAC achieves high performance in terms energy, packet drop rate, and latency.  相似文献   

10.
Wireless Networks - Relay-based cooperative communications have been emerging as a novel paradigm in many wireless protocols. The IEEE 802.11 medium access control (MAC) protocols have attracted...  相似文献   

11.
Dibaei  Mahdi  Ghaffari  Ali 《Wireless Networks》2020,26(4):2825-2843

Medium Access Control (MAC) protocol plays an important role in full-duplex wireless networks. Theoretically, full-duplex communications have this ability to increase the capacity of traditional half-duplex wireless systems by up to twice. However, designing and implementing an efficient MAC protocol is a central issue in this way. Increasing throughput, collision avoidance, and fairness are common challenges in designing an efficient full-duplex MAC protocol. After giving a short introduction to the general classification of traditional MAC protocols, IEEE 802.11 MAC protocol, and the identified challenges of full-duplex communications in wireless networks, this review paper provides a comprehensive survey of current major MAC protocols for full-duplex wireless communications and classifies them in to three categories i.e. distributed wireless local area networks, centralized wireless local area networks, and other types of networks. This paper also explores and gives a comparative analysis of current full-duplex MAC protocols with stating their advantages and disadvantages as well as comparing them one with another.

  相似文献   

12.
Distributed queuing collision avoidance (DQCA) is a distributed MAC protocol for WLAN systems that offers near optimum performance. The protocol implements a reservation scheme that ensures collision-free data transmissions for high traffic load and switches smoothly and automatically to a random access mechanism when the traffic load is light, improving the delay performance for this situation. In this article the DQCA protocol operation is thoroughly described, and its algorithm rules are given. Furthermore, an enhanced cross-layer scheduling mechanism is also proposed for inclusion in the protocol procedure. This mechanism employs a virtual priority function to reschedule transmissions according to a cross-layer design. Two possible configurations are described in this article by including a PHY-MAC dialog involving channel stale information and the waiting time of the packets in the system, offering a trade-off between throughput maximization and fairness. The performance in terms of throughput and mean delay of DQCA and the two cross-layer schemes has been evaluated through simulations, and a significant enhancement over legacy IEEE 802.11 operation is achieved. The obtained results emphasize the advantages of the proposed schemes and the importance of cross-layer design in wireless communication systems.  相似文献   

13.
Recent advances in body area network technologies such as radio frequency identification and ham radio, to name a few, have introduced a huge gap between the use of current wireless sensor network technologies and specific needs of some important wireless sensor network applications such as medical care, disaster relief, or emergency preparedness and response. In these types of applications, the mobility of nodes can occur, leading to the challenge of mobility handling. In this paper, we address this challenge by prioritizing transmissions of mobile nodes over static nodes. This is achieved by using shorter contention windows in reservation slots for mobile nodes (the so‐called backoff technique) combined with a novel hybrid medium access control (MAC) protocol (the so‐called versatile MAC). The proposed protocol advocates channel reuse for bandwidth efficiency and management purpose. Through extensive simulations, our protocol is compared with other MAC alternatives such as time division multiple access and IEEE 802.11 with request to send/clear to send exchange, chosen as benchmarks. The performance metrics used are bandwidth utilization, fairness of medium access, and energy consumption. The superiority of versatile MAC against the studied benchmark protocols is established with respect to these metrics. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
This paper deals with two critical issues in wireless sensor networks: reducing the end-to-end packet delivery delay and increasing the network lifetime through the use of cooperative communications. Here, we propose a delay- and energy-aware cooperative medium access control (DEC-MAC) protocol, which trades off between the packet delivery delay and a node’s energy consumption while selecting a cooperative relay node. DEC-MAC attempts to balance the energy consumption of the sensor nodes by taking into account a node’s residual energy as part of the relay selection metric, thus increasing the network’s lifetime. The relay selection algorithm exploits the process of elimination and the complementary cumulative distribution function for determining the most optimal relay within the shortest time period. Our numerical analysis demonstrates that the DEC-MAC protocol is able to determine the optimal relay in no more than three mini slots. Our simulation results show that the DEC-MAC protocol improves the end-to-end packet delivery latency and the network lifetime significantly compared to the state-of-the-art protocols, LC-MAC and CoopMAC.  相似文献   

15.
There has been considerable interest in the idea of cross-layer design of wireless networks. This is motivated by the need to provide a greater level of adaptivity to variations of wireless channels. This article examines one aspect of the interaction between the physical and medium access control layers. In particular, we consider the impact of signal processing techniques that enable multipacket reception on the throughput and design of random access protocols  相似文献   

16.
Duty cycling is a fundamental approach used in contention‐based medium access control (MAC) protocols for wireless sensor networks (WSNs) to reduce power consumption in sensor nodes. Existing duty cycle‐based MAC protocols use either scheduling or low‐power listening (LPL) to reduce unnecessary energy lost caused by idle listening and overhearing. This paper presents a new asynchronous duty‐cycled MAC protocol for WSN. It introduces a novel dual preamble sampling (DPS) approach to efficiently coordinate channel access among nodes. DPS combines LPL with a short‐strobed preamble approach to significantly reduce the idle‐listening issue in existing asynchronous protocols. We provide detailed analysis of the energy consumption by using well‐known energy models and compare our work with B‐MAC and X‐MAC, two most popular asynchronous duty cycle‐based MAC protocols for WSNs. We also present experimental results based on NS‐2 simulations. We show that depending on the traffic load and preamble length, the proposed MAC protocol improves energy consumption significantly without degrading network performances in terms of delivery ratio and latency. For example, for a traffic rate of 0.1 packets/s and a preamble length of 0.1 s, the average improvement in energy consumption is about 154%. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
A new handoff management scheme for wireless ATM networks is proposed. In this scheme, all cells are connected to their neighboring cells by permanent virtual circuits (PVCs) and to the access switch (AS) by switched virtual circuits (SVCs) which are only for new calls. Some carefully chosen cells, called rerouting cells, are also connected to the AS by PVCs. In summary, if a mobile roams to an ordinary neighboring cell, its traffic path is simply elongated by a PVC connecting the old and new cells. If a mobile roams to a rerouting cell, its traffic path is rerouted to a PVC between the AS and rerouting cell. By using PVC's for handoff calls, we can guarantee fast and seamless handoff. At the same time, our scheme improves the path efficiency by limiting the maximum number of hops that a path can be extended. Also, allowing path rerouting at a suitable time means the network resources are more efficiently utilized  相似文献   

18.
This paper presents a distributed medium access control (MAC) protocol for low data rate ultra‐wideband (UWB) wireless sensor networks (WSNs), named LA‐MAC. Current MAC proposal is closely coupled to the IEEE 802.15.4a physical layer and it is based on its Impulse‐Radio (IR) paradigm. LA‐MAC protocol amplifies its admission control mechanism with location‐awareness, by exploiting the ranging capability of the UWB signals. The above property leads to accurate interference predictions and blocking assessments that each node in the network can perform locally, limiting at the same time the actions needed to be performed towards the admission phase. LA‐MAC is evaluated through extensive simulations, showing a significant improvement in many critical parameters, such as throughput, admission ratio, energy consumption, and delay, under different traffic load conditions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.

Wireless body area network (WBAN) has witnessed significant attentions in the healthcare domain using biomedical sensor-based monitoring of heterogeneous nature of vital signs of a patient’s body. The design of frequency band, MAC superframe structure, and slots allocation to the heterogeneous nature of the patient’s packets have become the challenging problems in WBAN due to the diverse QoS requirements. In this context, this paper proposes an Energy Efficient Traffic Prioritization for Medium Access Control (EETP-MAC) protocol, which provides sufficient slots with higher bandwidth and guard bands to avoid channels interference causing longer delay. Specifically, the design of EETP-MAC is broadly divided in to four folds. Firstly, patient data traffic prioritization is presented with broad categorization including Non-Constrained Data (NCD), Delay-Constrained Data (DCD), Reliability-Constrained Data (RCD) and Critical Data (CD). Secondly, a modified superframe structure design is proposed for effectively handling the traffic prioritization. Thirdly, threshold based slot allocation technique is developed to reduce contention by effectively quantifying criticality on patient data. Forth, an energy efficient frame design is presented focusing on beacon interval, superframe duration, and packet size and inactive period. Simulations are performed to comparatively evaluate the performance of the proposed EETP-MAC with the state-of-the-art MAC protocols. The comparative evaluation attests the benefit of EETP-MAC in terms of efficient slot allocation resulting in lower delay and energy consumption.

  相似文献   

20.
WLANs have become a ubiquitous networking technology deployed everywhere. Meanwhile. VoIP is one popular application and a viable alternative to traditional telephony systems due to its cost efficiency. VoIP over WLAN (VoWLAN) has been emerging as an infrastructure to provide low-cost wireless voice services. However, VoWLAN poses significant challenges due to the characteristics of contention-based protocols and wireless networks. In this article we propose two mechanisms to provide quality of service for variable bit rate VoIP in IEEE 802.11e contention-based channel access WLANs: access time-based admission control and access point dynamic access. Simulation results are conducted to study these schemes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号