首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Iesan CM  Capat C  Ruta F  Udrea I 《Water research》2008,42(16):4327-4333
The objective of this paper is the evaluation of a hybrid inorganic/organic polymer type material based on hydrated ferric oxide (HFO), in the adsorption process of arsenic oxyanions from contaminated waters used as drinking water. The study includes rapid small-scale column tests conducted in continuous flow operation in order to assess the arsenic removal capacity in various conditions. Thus it was evaluated the influence of some competing ions like silicate and phosphate on As(V) adsorption and the influence of feed water pH in the removal process of As(V) and As(III) species. Based on the As/pH variation in time at different feed water pH (5, 7 and 9), a possible sorption mechanism that fits the experimental data was suggested. The regeneration and re-use of the hybrid adsorbent was studied in the presence and in the absence of the contaminant ions. The novel hybrid material is very selective towards arsenic oxyanions even though the presence of silica and phosphate reduces the adsorption capacity.  相似文献   

2.
This study is an efficient arsenic(V) removal from contaminated waters used as drinking water in adsorption process by zirconium(IV) loaded ligand exchange fibrous adsorbent. The bifunctional fibers contained both phosphonate and sulfonate groups. The bifunctional fiber was synthesised by graft polymerization of chloromethylstyrene onto polyethylene coated polypropylene fiber by means of electron irradiation graft polymerization technique and then desired phosphonate and sulfonate groups were introduced by Arbusov reaction followed by phosphorylation and sulfonation. Arsenic(V) adsorption was clarified in column methods with continuous flow operation in order to assess the arsenic(V) removal capacity in various conditions. The adsorption efficiency was evaluated in several parameters such as competing ions (chloride and sulfate), feed solution acidity, feed flow rate, feed concentration and kinetic performances at high feed flow rate of trace concentration arsenic(V). Arsenic(V) adsorption was not greatly changed when feed solutions pH at 3.0-7.0 and high breakthrough capacity was observed in strong acidic area below pH 2.2. Increasing the flow rate brings a decrease both breakthrough capacity and total adsorption. Trace level of arsenic(V) (0.015 mM) in presence of competing ions was also removed at high flow rate (750 h−1) with high removal efficiency. Therefore, the adsorbent is highly selective to arsenic(V) even in the presence of high concentration competing ions. The adsorbent is reversible and reusable in many cycles without any deterioration in its original performances. Therefore, Zr(IV) loaded ligand exchange adsorbent is to be an effective means to treat arsenic(V) contaminated water efficiently and able to safeguard the human health.  相似文献   

3.
Xiaohong Guan  Haoran Dong  Jun Ma  Li Jiang   《Water research》2009,43(15):3891-3899
Effects of sulfate, phosphate, silicate and humic acid (HA) on the removal of As(III) in the KMnO4–Fe(II) process were investigated in the pH range of 4–9 with permanganate and ferrous sulfate applied at selected dosage. Sulfate decreased the removal of arsenic by 6.5–36.0% at pH 6–9 and the decrease in adsorption did not increase with increasing concentration of sulfate from 50 to 100 mg/L. In the presence of 1 mg/L phosphate, arsenic removal decreased gradually as pH increased from 4 to 6, and a sharp drop occurred at pH 7–9. The presence of 10 mg/L silicate had negligible effect on arsenic removal at pH 4–5 whereas decreased the arsenic removal at pH 6–9 and the decrease was more significant at higher pH. The presence of HA dramatically decreased the arsenic removal over the pH range of 6–9 and HA of higher concentration resulted in greater drop in arsenic removal. The effects of the competing anions on arsenic removal in the KMnO4–Fe(II) process were highly dependent on pH and the degree of these four anions influencing As(III) removal decreased in the following order, phosphate > humic acid > silicate > sulfate. Sulfate differed from the other three anions because sulfate decreased the removal of arsenic mainly by competitive adsorption while phosphate, silicate and HA decreased the removal of As(III) by competitive adsorption and sequestering the formation of ferric hydroxide derived from Fe(II).  相似文献   

4.
This research studied As(III) and As(V) removal during electrocoagulation (EC) in comparison with FeCl3 chemical coagulation (CC). The study also attempted to verify chlorine production and the reported oxidation of As(III) during EC. Results showed that As(V) removal during batch EC was erratic at pH 6.5 and the removal was higher-than-expected based on the generation of ferrous iron (Fe2+) during EC. As(V) removal by batch EC was equal to or better than CC at pH 7.5 and 8.5, however soluble Fe2+ was observed in the 0.2-μm membrane filtrate at pH 7.5 (10-45%), and is a cause for concern. Continuous steady-state operation of the EC unit confirmed the deleterious presence of soluble Fe2+ in the treated water. The higher-than-expected As(V) removals during batch mode were presumed due to As(V) adsorption onto the iron rod oxyhydroxides surfaces prior to the attainment of steady-state operation. As(V) removal increased with decreasing pH during both CC and EC, however EC at pH 6.5 was anomalous because of erratic Fe2+ oxidation. The best adsorption capacity was observed with CC at pH 6.5, while lower but similar adsorption capacities were observed at pH 7.5 and 8.5 with CC and EC. A comparison of As(III) adsorption showed better removals during EC compared with CC possibly due to a temporary pH increase during EC. In contrast to literature reports, As(III) oxidation was not observed during EC, and As(III) adsorption onto iron hydroxides during EC was only 5-30% that of As(V) adsorption. Also in contrast to literature, significant Cl2 was not generated during EC, in fact, the rods actually produced a significant chlorine demand due to reduced iron oxides on the rod. Although Cl2 generation and As(III) oxidation are possible using a graphite anode, a combination of graphite and iron rods in the same EC unit did not produce As(III) oxidation. However, a two-stage process (graphite anode followed by iron anode in separate chambers) was effective in As(III) oxidation and removal. The competing ions, silica and phosphate interfered with As(V) adsorption during both CC and EC. However, the degree of interference depends on the concentration and presence of other competing ions. In particular, the presence of silica lowered the effect of phosphate with increasing pH due to silica’s own significant effect at high pHs.  相似文献   

5.
Adsorption of As(V) and As(III) by nanocrystalline titanium dioxide   总被引:2,自引:0,他引:2  
This study evaluated the effectiveness of nanocrystalline titanium dioxide (TiO(2)) in removing arsenate [As(V)] and arsenite [As(III)] and in photocatalytic oxidation of As(III). Batch adsorption and oxidation experiments were conducted with TiO(2) suspensions prepared in a 0.04 M NaCl solution and in a challenge water containing the competing anions phosphate, silicate, and carbonate. The removal of As(V) and As(III) reached equilibrium within 4h and the adsorption kinetics were described by a pseudo-second-order equation. The TiO(2) was effective for As(V) removal at pH<8 and showed a maximum removal for As(III) at pH of about 7.5 in the challenge water. The adsorption capacity of the TiO(2) for As(V) and As(III) was much higher than fumed TiO(2) (Degussa P25) and granular ferric oxide. More than 0.5 mmol/g of As(V) and As(III) was adsorbed by the TiO(2) at an equilibrium arsenic concentration of 0.6mM. The presence of the competing anions had a moderate effect on the adsorption capacities of the TiO(2) for As(III) and As(V) in a neutral pH range. In the presence of sunlight and dissolved oxygen, As(III) (26.7 microM or 2mg/L) was completely converted to As(V) in a 0.2g/L TiO(2) suspension through photocatalytic oxidation within 25 min. The nanocrystalline TiO(2) is an effective adsorbent for As(V) and As(III) and an efficient photocatalyst.  相似文献   

6.
Awual MR  Jyo A  Ihara T  Seko N  Tamada M  Lim KT 《Water research》2011,45(15):4592-4600
This study was investigated for the trace phosphate removal at high feed flow rate by ligand exchange fibrous adsorbent. The zirconium(IV) loaded bifunctional fibers containing both phosphonate and sulfonate were used as a highly selective ligand exchange adsorbent for trace phosphate removal from water. The precursory fiber of the bifunctional fibers was co-grafted by polymerization of chloromethylstyrene and styrene onto polyethylene coated polypropylene fiber and then bifunctional fibers were prepared by Arbusov reaction followed by phosphorylation and sulfonation. Phosphate adsorption experimental work was carried out in column approach. Phosphate adsorption increased with decreasing the pH of feed solutions. An increase in the feeds flow rate brings a decrease in both breakthrough capacity and total adsorption. The effect of competing anions on phosphate adsorption systems was investigated. The experimental findings reveal that the phosphate adsorption was not affected in the presence of competing anions such as chloride and sulfate despite the enhancement of the breakthrough points and total adsorption. Due to high selectivity to phosphate species, low concentration level of phosphate (0.22 mg/L) was removed at high feed flow rate of 450 h−1 in space velocity. The adsorbed phosphate on the Zr(IV) loaded fibrous column was quantitatively eluted with 0.1 M NaOH solution and then the column was regenerated by 0.5 M H2SO4 for the next adsorption operation. During many adsorption-elution-regeneration cycles, no measurable Zr(IV) was found in the column effluents. Therefore, the Zr(IV) loaded bifunctional fibrous adsorbent is to be an effective means to treat wastewater to prevent eutrophication in the receiving water bodies for long time without any deterioration.  相似文献   

7.
Dambies L  Vincent T  Guibal E 《Water research》2002,36(15):3699-3710
Modified chitosan gel beads, which had been prepared by the molybdate adsorption and coagulation (in the presence of molybdate) methods, were tested for As(III) and As(V) removal from dilute solutions (in the range 5-20 mg As L-1). The sorbent is very efficient at removing As(V) from acid solutions (optimum pH close to pH 2-3), whereas the sorption capacities are significantly lower for As(III) uptake (230 mg As(V) g-1 Mo, 70 mg As(III) g-1 Mo, respectively). Since the sorption proceeds in acidic solutions with a partial release of molybdate and with residual concentrations (ca. 500 micrograms As L-1) above the regulations for drinking water, the process appears to be directed to the treatment of industrial effluents or as a pre-concentration process. The mechanism of As(V) sorption is related to the ability of molybdate ions to complex As(V) ions in acid solutions. The uptake mechanism was confirmed by XPS analysis and desorption studies. In the case of As(III) sorption the mechanism of uptake is not identified since no complex has been cited in the literature regarding As(III) binding to Mo (VI), which was also identified by XPS analysis as the sorption site. As(V) sorption is not influenced by the presence of co-ions, with the exception of phosphate anions at low concentration, and silicate at high relative concentration. Arsenic desorption can be performed using phosphoric acid solutions.  相似文献   

8.
A study on the removal of arsenic from real life groundwater using iron–chitosan composites is presented. Removal of arsenic(III) and arsenic(V) was studied through adsorption at pH 7.0 under equilibrium and dynamic conditions. The equilibrium data were fitted to Langmuir adsorption models and the various model parameters were evaluated. The monolayer adsorption capacity from the Langmuir model for iron chitosan flakes (ICF) (22.47 ± 0.56 mg/g for As(V) and 16.15 ± 0.32 mg/g for As(III)) was found to be considerably higher than that obtained for iron chitosan granules (ICB) (2.24 ± 0.04 mg/g for As(V); 2.32 ± 0.05 mg/g for As(III)). Anions including sulfate, phosphate and silicate at the levels present in groundwater did not cause serious interference in the adsorption behavior of arsenate/arsenite. The column regeneration studies were carried out for two sorption–desorption cycles for both As(III) and As(V) using ICF and ICB as sorbents. One hundred and forty-seven bed volumes of As(III) and 112 bed volumes of As(V) spiked groundwater were treated in column experiments using ICB, reducing arsenic concentration from 500 to <10 μg/l. The eluent used for the regeneration of the spent sorbent was 0.1 M NaOH. The adsorbent was also successfully applied for the removal of total inorganic arsenic down to <10 μg/l from real life arsenic contaminated groundwater samples.  相似文献   

9.
Magnetite nanoparticles were used to treat arsenic‐contaminated water. Because of their large surface area, these particles have an affinity for heavy metals by adsorbing them from a liquid phase. The results of the study showed that the maximum arsenic adsorption occurred at pH 2, with a value of approximately 3.70 mg/g for both As(III) and As(V) when the initial concentration of both arsenic species was maintained at 2 mg/L. The study showed that, apart from pH, the removal of arsenic from contaminated water also depends on the contact time, the initial concentration of arsenic, the phosphate concentration in the water and the adsorbent concentration. The results suggest that arsenic adsorption involved the formation of weak arsenic–iron oxide complexes at the magnetite surface. At a fixed adsorbent (magnetite nanoparticles) concentration of 0.4 g/L, percent arsenic removal decreased with increasing phosphate concentration. Magnetite nanoparticles removed <50% of arsenic from water containing >6 mg/L phosphate. In this case, an optimum design for achieving high arsenic removal by magnetite nanoparticles may be required.  相似文献   

10.
Exposure to arsenic through drinking water poses a threat to human health. Electrocoagulation is a water treatment technology that involves electrolytic oxidation of anode materials and in-situ generation of coagulant. The electrochemical generation of coagulant is an alternative to using chemical coagulants, and the process can also oxidize As(III) to As(V). Batch electrocoagulation experiments were performed in the laboratory using iron electrodes. The experiments quantified the effects of pH, initial arsenic concentration and oxidation state, and concentrations of dissolved phosphate, silica and sulfate on the rate and extent of arsenic removal. The iron generated during electrocoagulation precipitated as lepidocrocite (γ-FeOOH), except when dissolved silica was present, and arsenic was removed by adsorption to the lepidocrocite. Arsenic removal was slower at higher pH. When solutions initially contained As(III), a portion of the As(III) was oxidized to As(V) during electrocoagulation. As(V) removal was faster than As(III) removal. The presence of 1 and 4 mg/L phosphate inhibited arsenic removal, while the presence of 5 and 20 mg/L silica or 10 and 50 mg/L sulfate had no significant effect on arsenic removal. For most conditions examined in this study, over 99.9% arsenic removal efficiency was achieved. Electrocoagulation was also highly effective at removing arsenic from drinking water in field trials conducted in a village in Eastern India. By using operation times long enough to produce sufficient iron oxide for removal of both phosphate and arsenate, the performance of the systems in field trials was not inhibited by high phosphate concentrations.  相似文献   

11.
The interactions of co-present Cr(VI) and As(V), and the influences of humic acid and bicarbonate in the process of Cr(VI) and As(V) removal by Fe0 were investigated in a batch setting using simulated groundwater with 5 mM NaCl, 1 mM Na2SO4, and 0.8 mM CaCl2 as background electrolytes at an initial pH value of 7. Cr(VI) and As(V) were observed to be subject to different impacts induced by co-existing As(V) or Cr(VI), humic acid and bicarbonate, originating from their distinct removal mechanisms by Fe0. Cr(VI) removal is a reduction-dominated process, whereas As(V) removal principally involves adsorption onto iron corrosion products. Experimental results showed that Cr(VI) removal was not affected by the presence of As(V) and humic acid. However, As(V) removal appeared to be inhibited by co-present Cr(VI). When the Cr(VI) concentration was 2, 5, and 10 mg/L, in the absence of humic acid and bicarbonate, As(V) removal rate constants were decreased by 27.9%, 49.0%, and 61.2%, respectively, which probably resulted from competition between Cr(VI) and As(V) for adsorption sites of the iron corrosion products. Furthermore, the presence of humic acid significantly varied As(V) removal kinetics by delaying the formation and aggregation of iron hydroxides due to the formation of soluble Fe-humate complexes and stably dispersed fine iron hydroxides colloids. In the presence of bicarbonate, both Cr(VI) and As(V) removal was increased and the inhibitory effect of Cr(VI) on As(V) removal was suppressed, resulting from the buffering effects and the promoted iron corrosion induced by bicarbonate, and the formation of CaCO3 in solution, which enhanced As(V) adsorption.  相似文献   

12.
Nguyen VL  Chen WH  Young T  Darby J 《Water research》2011,45(14):4069-4080
The influences of three important interferences (silica, phosphate, and vanadate) and the effect of different pH levels and initial arsenate concentrations on the breakthrough of arsenic in adsorptive media columns were examined by using the Rapid Small Scale Column Test with a 35−2 fractional factorial design. Three commercially available adsorbents used for arsenic removal (E33, GFH and Metsorb) were tested. Results indicated that GFH was more susceptible to water quality changes than Metsorb and E33 under conditions tested. GFH also adsorbed more anions than the other two media. The pH was the factor that had the most impact on the performance of the columns, followed by arsenic concentration and silica concentration. Lowering pH from 8.3 to 7.0 resulted in an increase of the mean bed volume treated until 10 μg/L arsenic breakthrough by 40, 12 and 18 thousands BV treated by GFH, E33 and Metsorb columns, respectively. However, at high silica concentration, lowering pH did not increase the performance of the media. GFH and Metsorb were more sensitive to changes in arsenic concentration at low pH than at high pH. Although vanadium and phosphate were previously reported to reduce arsenic adsorption in batch tests, in column mode with the presence of competitors, their effect was insignificant compared to that of pH, arsenic or silica under the conditions used in this study.  相似文献   

13.
Performances of crosslinked poly(allylamine) resin (PAA) as arsenate (As(V)) adsorbent were studied using a column packed with PAA in hydrochloride form. PAA has a high amino group content of 14.6 mmol/g in free amine form and a high chloride content of 10.2 mmol/g in hydrochloride form. Its wet volumes in water were 4.5 and 3.1 mL/g in hydrochloride and free amine forms, respectively, indicating its high hydrophilicity. Breakthrough capacities for As(V) were evaluated changing conditions of adsorption operations: pH of feeds from 2.2 to 7.0, concentration of As(V) in feeds from 0.020 to 2.0 mM, and feed flow rate from 250 to 4000 h−1 in space velocity. Breakthrough capacities increased from 2.6 to 3.4 mmol/g with a decrease in pH from 7.0 and 2.2, and also from 0.81 to 2.8 mmol/g with an increase in As(V) concentration from 0.020 to 2.0 mM. When feed flow rate increased from 250 to 4000 h−1, breakthrough capacities changed form 3.5 to 0.81 mmol/g. Because of non-Hofmeister anion selectivity behavior of PAA, the interference of chloride and nitrate was minor. Although PAA slightly preferred As(V) to sulfate, the latter more markedly interfered with uptake of As(V) than chloride and nitrate. Competitive uptake of As(V) and phosphate revealed that PAA slightly preferred phosphate to As(V). The adsorbed As(V) was quantitatively eluted with 2 M HCl and PAA was simultaneously regenerated into hydrochloride form. All results were obtained using the same column without change of the packed PAA and any deterioration in column performances for 4 months.  相似文献   

14.
Chemical filters are used extensively in the cleanrooms of the semiconductor factories to remove airborne molecular contamination (AMC). Adsorption by activated carbons (AC) as media within the chemical filter is one of the practical methods for removal of gaseous contamination in a cleanroom. The objective of this study is to evaluate coconut shell activated carbon adsorbent-loaded nonwoven fabric media performance by determining the breakthrough curves, the linear driving force (LDF), the intra-particle diffusion characteristics, the empty bed contact time (EBCT) and the bed depth service time (BDST), the mass-transfer zone (MTZ), and pressure drop. The testing conditions were maintained at 28 ± 1 °C, and relative humidity at 40 ± 2% with face velocities of 0.076, 0.114 and 0.152 m/s for removal efficiency and capacity determination. The challenge gas concentrations of toluene were fixed at 10, 31, 42 and 70 ppm to accelerate the breakthrough of media adsorption. The concentrations were measured by a real-time photoionization detector. Results showed that breakthrough curves correlate to the challenge vapor concentration and the face velocity. Saturated adsorption ratio was increased with raised challenge gas concentration and increased face velocity significantly.  相似文献   

15.
Arsenate removal from water using sand--red mud columns   总被引:5,自引:0,他引:5  
This study describes experiments in which sorption filters, filled with chemically modified red mud (Bauxsol) or activated Bauxsol (AB) coated sand, are used to remove As(V) (arsenate) from water. Bauxsol-coated sand (BCS) and AB-coated sand (ABCS) are prepared by mixing Bauxsol or AB with wet sand and drying. Samples of the BCS and ABCS are also used in batch experiments to obtain isotherm data. The observed adsorption data fit the Langmuir model well, with adsorption maxima of 3.32 and 1.64 mgg(-1) at pH values of 4.5 and 7.1, respectively for BCS; and of 2.14 mgg(-1) for ABCS at a pH of 7.1. Test results show that higher arsenate adsorption capacities can be achieved for both BCS and ABCS when using the columns compared to results for batch experiments; the difference is greater for BCS. Additional batch tests, carried out for 21 days using BCS to explain the observed discrepancy, show that the equilibrium time previously used in batch experiments was too short because adsorption continued for at least 21 days and reached 87% after 21 days compared to only 35% obtained after 4h. Fixed bed column tests, used to investigate the effects of flow rate and initial arsenate concentration indicate that the process is sensitive to both parameters, with lower flow rates (longer effective residence times in the columns) and initial arsenate concentrations providing better column performance. An examination of the combined effect of potential competing anions (i.e. silicate, phosphate, sulphate and bicarbonate) on the column performance showed that the presence of these anions in tap water slightly decreases arsenate removal. Each breakthrough curve is compared to the Thomas model, and it is found that the model may be applied to estimate the arsenate sorption capacity in columns filled with BCS and ABCS. The data obtained from both batch and column studies indicate that BCS and ABCS filtration could be effectively used to remove arsenate from water, with the latter being more efficient.  相似文献   

16.
Zeng H  Arashiro M  Giammar DE 《Water research》2008,42(18):4629-4636
Arsenate removal from water using an iron oxide-based sorbent was investigated to determine the optimal operating conditions and the influence of water composition on treatment efficiency. The novel sorbent with a high surface area was studied in flow-through column experiments conducted at different flow rates to quantify the effect of empty bed contact time (EBCT) on treatment performance. Arsenic removal efficiency declined with decreasing EBCT. Arsenic breakthrough curves at different EBCT values were successfully simulated with a pore and surface diffusion model (PSDM). Surface diffusion was the dominant intraparticle mass transfer process. The effect of water composition on arsenic removal efficiency was evaluated by conducting experiments with ultrapure water, ultrapure water with either phosphate or silica, and a synthetic groundwater that contained both phosphate and silica. Silica was more inhibitory than phosphate, and the silica in synthetic groundwater controlled the arsenic removal efficiency.  相似文献   

17.
This study assessed the impact of MIEX pre-treatment, followed by either coagulation or microfiltration (MF), on the effectiveness of pilot granular activated carbon (GAC) filters for the removal of the taste and odour compounds, 2-methylisoborneol (MIB) and geosmin, from a surface drinking water source over a 2-year period. Complete removal of MIB and geosmin was achieved by all GAC filters for the first 10 months, suggesting that the available adsorption capacity was sufficient to compensate for differences in dissolved organic carbon (DOC) entering the GAC filters.Reduction of empty bed contact time (EBCT), in all but one GAC filter, resulted in breakthrough of spiked MIB and geosmin, with initial results inconclusive regarding the impact of MIEX pre-treatment. MIB and geosmin removal increased over the ensuing 12 months until complete removal of both MIB and geosmin was again achieved in all but one GAC filter, which had been pre-chlorinated. Autoclaving and washing the GAC filters had minimal impact on geosmin removal but reduced MIB removal by 30% in all but the pre-chlorinated filter, confirming that biodegradation impacted MIB removal. The impact of biodegradation was greater than any impact on GAC adsorption arising from DOC differences due to MIEX pre-treatment. It is not clear whether, at a lower initial EBCT, MIEX pre-treatment may have impacted on the adsorption capacity of the virgin GAC.The GAC filter maintained at the longer EBCT, which was also pre-chlorinated, completely removed MIB and geosmin for the period of the study, suggesting that the greater adsorption capacity was compensating for any decrease in biological degradation.  相似文献   

18.
Arsenic attenuation by oxidized aquifer sediments in Bangladesh   总被引:3,自引:0,他引:3  
Recognition of arsenic (As) contamination of shallow fluvio-deltaic aquifers in the Bengal Basin has resulted in increasing exploitation of groundwater from deeper aquifers that generally contain low concentrations of dissolved As. Pumping-induced infiltration of high-As groundwater could eventually cause As concentrations in these aquifers to increase. This study investigates the adsorption capacity for As of sediment from a low-As aquifer near Dhaka, Bangladesh. A shallow, chemically-reducing aquifer at this site extends to a depth of 50 m and has maximum As concentrations in groundwater of 900 microg/L. At depths greater than 50 m, geochemical conditions are more oxidizing and groundwater has <5 microg/L As. There is no thick layer of clay at this site to inhibit vertical transport of groundwater. Arsenite [As(III)] is the dominant oxidation state in contaminated groundwater; however, data from laboratory batch experiments show that As(III) is oxidized to arsenate [As(V)] by manganese (Mn) minerals that are present in the oxidized sediment. Thus, the long-term viability of the deeper aquifers as a source of water supply is likely to depend on As(V) adsorption. The adsorption capacity of these sediments is a function of the oxidation state of As and the concentration of other solutes that compete for adsorption sites. Arsenite that was not oxidized did adsorb, but to a much lesser extent than As(V). Phosphate (P) caused a substantial decrease in As(V) adsorption. Increasing pH and concentrations of silica (Si) had lesser effects on As(V) adsorption. The effect of bicarbonate (HCO(3)) on As(V) adsorption was negligible. Equilibrium constants for adsorption of As(V), As(III), P, Si, HCO(3), and H were determined from the experimental data and a quantitative model developed. Oxidation of As(III) was modeled with a first-order rate constant. This model was used to successfully simulate As(V) adsorption in the presence of multiple competing solutes. Results from these experiments show that oxidized sediments have a substantial but limited capacity for removal of As from groundwater.  相似文献   

19.
Defluoridation from aqueous solutions by granular ferric hydroxide (GFH)   总被引:1,自引:0,他引:1  
This research was undertaken to evaluate the feasibility of granular ferric hydroxide (GFH) for fluoride removal from aqueous solutions. Batch experiments were performed to study the influence of various experimental parameters such as contact time (1 min-24 h), initial fluoride concentration (1-100 mg L−1), temperature (10 and 25 °C), pH (3-12) and the presence of competing anions on the adsorption of fluoride on GFH. Kinetic data revealed that the uptake rate of fluoride was rapid in the beginning and 95% adsorption was completed within 10 min and equilibrium was achieved within 60 min. The sorption process was well explained with pseudo-first-order and pore diffusion models. The maximum adsorption capacity of GFH for fluoride removal was 7.0 mg g−1. The adsorption was found to be an endothermic process and data conform to Langmuir model. The optimum fluoride removal was observed between pH ranges of 4-8. The fluoride adsorption was decreased in the presence of phosphate followed by carbonate and sulphate. Results from this study demonstrated potential utility of GFH that could be developed into a viable technology for fluoride removal from drinking water.  相似文献   

20.
Flow rate, electron donor addition, and biomass control were evaluated in order to optimize perchlorate (ClO4) removal from drinking water using biologically active carbon (BAC) filtration. Influent dissolved oxygen (DO) was lowered from ambient conditions to approximately 2.5 mg/L for all experiments using a nitrogen sparge. When influent nitrate concentration was 0-2.0 mg/L, 1.6-2.8 mg/L as carbon of acetate or ethanol was required to achieve and sustain the complete removal of 50 μg/L perchlorate in a BAC filter. Most or all of the exogenous acetate and ethanol was removed during biofiltration. When a 72-h electron donor feed failure was simulated, a maximum perchlorate breakthrough of 18 μg/L was observed and, once electron donor was reapplied, 9 days were required to reestablish complete perchlorate removal. During a 24-h electron donor feed failure simulation, the maximum effluent perchlorate concentration detected was 6.7 μg/L. Within 24 h of reactivating the electron donor, the filter regained its capacity to consistently remove 50 μg/L perchlorate to below detection. Although biomass growth diminished the filter's ability to consistently remove perchlorate, a cleaning procedure immediately restored stable, complete perchlorate removal. This cleaning procedure was required approximately every 50 days (4800 bed volumes) when influent DO concentration was 2.5 mg/L. Empty-bed contact time (EBCT) experiments showed that 80% perchlorate removal was achieved using a 5-min EBCT, and complete perchlorate removal was observed for an EBCT of 9 min. It was also demonstrated that BAC filtration consistently removed perchlorate to below detection for influent perchlorate concentrations ranging from 10 to 300 μg/L, influent sulfate concentrations between 0 and 220 mg/L, influent pH values of 6.5-9.0, and operating temperatures of 5-22°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号