首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
pH‐responsiveness is highly desirable in the stimuli‐responsive controlled release because of the distinct advantages of the fast response of pH‐triggered release and the available pH‐difference between intra‐ and extra‐cells. The present work reported a kind of novel pH‐responsive polymeric micelles, which was derived from biopolymer of 6‐O‐dodecyl‐chitosan carbamate (DCC) and evaluated as gene‐controlled release vector. The amphiphilic and amino‐rich DDC was synthesized through a protection‐graft‐deprotection method. 13C CP/MAS NMR, FTIR, and elemental analysis identified that dodecyls were chemoselectively grafting at 6‐hydroxyls of chitosan via the pH‐responsive bonds of carbamate, and the substitute degree (SD) was 14%. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) showed that DCC self‐assembled into polymeric micelles in aqueous solutions. The DCC polymeric micelles formed complexes with pDNA, which was elucidated by Gel retardation, TEM, and DLS. Transfection and cytotoxicity assays in A549 cells showed that DCC polymeric micelles were suitable for gene delivery. The improved transfection was attributed to the pH‐responsiveness and the moderate pDNA‐binding affinity, which led to easier release of pDNA intra‐cells. The synthesized DCC polymeric micelles might be a promising and safe candidate as nonviral vectors for gene delivery. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42469.  相似文献   

2.
In this article, a temperature‐ and pH‐responsive delivery system based on block‐copolymer‐capped mesoporous silica nanoparticles (MSNs) is presented. A poly[2‐(diethylamino)ethyl methacrylate)] (PDEAEMA)‐b‐poly(N‐isopropyl acrylamide) (PNIPAM) shell on MSNs was obtained through the surface‐initiated atom transfer radical polymerization. The block copolymer PDEAEMA‐b‐PNIPAM showed both temperature‐ and pH‐responsive properties. The release of the loaded model molecules from PDEAEMA‐b‐PNIPAM‐coated MSNs could be controlled by changes in the temperature or pH value of the medium. The as‐desired drug‐delivery carrier may be applied to biological systems in the future. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42395.  相似文献   

3.
A series of pH‐temperature dual stimuli‐responsive random copolymers poly[N,N‐dimethylaminoethyl methacrylate‐co‐poly(poly(ethylene glycol) methyl ether methacrylate][poly(DMAEMA‐co‐MPEGMA)] were synthesized by free radical polymerization. The supramolecular hydrogel was formed by pseudopolyrotaxane, which was prepared with the host‐guest interactions between α‐cyclodextrin (α‐CD) and poly(ethylene glycol) (PEG) side chains. Fourier transform infrared (FT‐IR), nuclear magnetic resonance (1H NMR), and X‐ray diffraction (XRD) confirmed the structures of the hydrogels. The pH‐temperature dual stimuli responsive properties of the hydrogels were characterized by rheometer. Finally, the controllable drug release behavior of the hydrogel, which was used 5‐fluorouracil (5‐Fu) as the model drug, was investigated at different temperatures and different pH values. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43279.  相似文献   

4.
Thermoresponsive amphiphilic copolymer, poly[N‐isopropyl acrylamide‐co‐3‐(trimethoxysilyl)propylmethacrylate]‐b‐poly{N‐[3‐(dimethylamino)propyl]methacrylamide} with a branched structure was designed and synthesized by consecutive reversible addition–fragmentation chain‐transfer polymerization. The further hydrolysis of trimethoxysilyl functions in 3‐(trimethoxysilyl) propyl methacrylate units led to the fabrication of core‐crosslinked (CCL) micelles with silica crosslinks at temperatures above the lower critical solution temperature of the poly(N‐isopropyl acrylamide) block. The thermally induced structural and morphological changes of the CCL micelles in aqueous solution were investigated by transmission electron microscopy and 1H‐NMR analyses. The resulting CCL micelles were further explored as nanocarriers for the codelivery of an anticancer drug and nucleic acid for enhanced therapeutic efficacy. The CCL micelles effectively condensed the nucleic acid and mediated higher gene transfer in the presence of serum than in serum‐free transduction. A cytotoxicity study revealed that whereas the pure CCL micelles exhibited unapparent cytotoxicity, the codelivery of p53 and doxorubicin with the CCL micelle formulation resulted in better treatment efficiency than sole chemotherapy. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41752.  相似文献   

5.
A novel series of quadruple responsive copolymers, poly(ethylene glycol)‐ss‐[poly(dimethylaminoethyl methacrylate)‐co‐poly(2‐nitrobenzyl methacrylate)] [PEG‐ss‐(PDMAEMA‐co‐PNBM)], were synthesized via atom transfer radical polymerization mediated by home‐made PEG‐based macro‐initiator labeled with disulfides. The obtained copolymers could self‐assemble in aqueous solution forming micelles with the disulfide bridge linking the hydrophilic coronas (PEG) and the hydrophobic cores (PDMAEMA‐co‐PNBM). Investigation on the resulted micelles indicated that the micelles could respond to various stimuli, that is, temperature, pH, the presence of dithiothreitol (DTT), and UV irradiation. Moreover, the responsive behavior of the micelles depends on the type of stimuli, that is, temperature change causes size change of the micelles, while UV irradiation leads to dissolution of the self‐assembled structures. Such stimulus‐dependent responsive behavior could be applied in smart materials that deal with multi‐tasks or in the construction of complex logic gate. The potential application of the multi‐responsive micelles in cargo release system was also evaluated using Nile Red (NR) as model molecule. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46675.  相似文献   

6.
A series of thermoresponsive triblock copolymers, methoxy poly(ethylene oxide)‐b‐poly(ε‐caprolactone)‐b‐poly(N‐isopropylacrylamide) (mPEO‐b‐PCL‐b‐PNIPAM), with different PCL and PNIPAM block lengths, were synthesized by a combination of ring opening polymerization and reversible addition‐fragmentation chain transfer polymerization techniques. The triblock copolymers undergo self‐assembly in aqueous solutions forming stable nanovesicles of various sizes with a lipid membrane structure similar to body cells as revealed by transmission electron microscopy. The nanovesicle is thermoresponsive, that is, its size is tunable using the temperature as a switch: shrinks at a temperature above the lower critical solution temperature (LCST) and expands at a temperature below the LCST. The corresponding LCST of the triblock copolymers is adjustable by varying the PNIAM segment length as well as the PCL segment length and covers a range from 33.9 to 41.0°C in water. The diameter of nanovesicles for mPEO3kb‐PCL5kb‐PNIPAM13.2k is about 177.7 nm below the LCST and 138.9 nm above the LCST, as determined by dynamic light scattering. It was demonstrated using indomethacin, a popular anti‐inflammation medicine, that the triblock copolymers can effectively act as a drug release carrier under the right human physiological conditions, that is, store the drug at a lower temperature and release it at a higher temperature, possibly targeting at the lesion sites of human body. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41361.  相似文献   

7.
Thermoresponsive poly(N‐isopropyl acrylamide) (PNIPAM)‐block‐hydroxy‐terminated polybutadine‐block‐PNIPAM triblock copolymers were synthesized by atom transfer radical polymerization; this was followed by the in situ epoxidation reaction of peracetic acid. The copolymers were characterized by 1H‐NMR, Fourier transform infrared spectroscopy, and size exclusion chromatography measurements, and their physicochemical properties in aqueous solution were investigated by surface tension measurement, fluorescent spectrometry, ultraviolet–visible transmittance, transmission electron microscopy observations, dynamic light scattering, and so on. The experimental results indicate that the epoxidized copolymer micelle aggregates retained a spherical core–shell micelle structure similar to the control sample. However, they possessed a decreased critical aggregate concentration (CAC), increased hydrodynamic diameters, and a high aggregation number and cloud point because of the incorporation of epoxy groups and so on. In particular, the epoxidized copolymer micelles assumed an improved loading capacity and entrapment efficiency of the drug, a preferable drug‐release profiles without an initial burst release, and a low cytotoxicity. Therefore, they were more suitable for the loading and delivery of the hydrophobic drug as a controlled release drug carrier. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41877.  相似文献   

8.
A controlled/ living free‐radical polymerization technique was introduced to prepared a homogeneous poly(N‐isopropylacrylamide)‐g‐poly(sulfobetaine methacrylate) hydrogel (RG) possessing a highly porous architecture via two steps. Compared to a poly(N‐isopropylacrylamide)‐co‐poly(sulfobetaine methacrylate) hydrogel (CG) prepared by conventional radical polymerization, RG exhibited a much faster shrinking rate (it lost over 72% of the water in 15 min) in response to the temperature changes. The release behaviors of tetracycline hydrochloride (TCHC) of the hydrogels indicated the TCHC release from the RG could be prolonged to 48 h at 37°C; this was much longer than that for CG (5 h at 37°C). Bovine serum albumin (BSA) was chosen as the model protein to examine the low‐fouling properties of the RG. The BSA adsorption data showed that improved antifouling properties could be achieved by the RG at both 25 and 37°C. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39816.  相似文献   

9.
Two series of pH‐sensitive semi‐interpenetrating network hydrogels (semi‐IPN) based on chitosan (CS) natural polymer and acrylamide (AAm) and/or N‐hydroxymethyl acrylamide (HMA) monomers by varying the monomer and CS ratios were synthesized by free radical chain polymerization. 5‐Fluorouracil (5‐FU), a model anticancer drug, has been added to the feed composition before the polymerization. The characterization of gels indicated that the drug is molecularly dispersed in the polymer matrix. The swelling kinetics of drug‐loaded gels have decreased with increased HMA content at 37°C in both distilled water and buffer solutions with a pH of 2.1 or 7.4. Elastic modulus of the gels increased with the increase in HMA content and higher CS concentration enhanced the elastic modulus positively. Moreover, cumulative release percentages of the gels for 5‐FU were ca. 10% higher in pH 2.1 than those in pH 7.4 media. It was determined that they can be suitable for the use in both gastric and colon environments. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41886.  相似文献   

10.
Scientists are searching potential solutions for cancer treatments as well as ways to avoid the side effects of anti‐cancer agents, via targeted drug delivery. The aim of this research is to propose dual responsive beads based on sodium alginate (SA), methylcellulose (MC), and magnetic iron oxide nanoparticles (MIONs) for controlled release of 5‐Fluorouracil (5‐FU) as model drug. The beads were prepared by the dual crosslinking of SA and MC in the presence of MIONs. The structural, thermal, morphological, magnetic characteristics as well as the release profile of 5‐FU were studied. The characterization results showed that the drug molecules and MIONs were well dispersed in the polymeric matrix. The cumulative release percentage was ca. 80% at pH = 4.2 and 40% at pH = 7.2 after 6 h. Thus, the sensitivity of beads on the pH value was verified. Moreover, the release profile exhibited reduction with an increase in the concentration of MIONs under an external magnetic field. The obtained results confirmed the dual sensitive release of 5‐FU (i.e., PH/magnetic) that can be used for the targeted and controlled drug delivery systems. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45143.  相似文献   

11.
The purpose of this study is to develop a stimuli‐responsive hybrid polymer gel system with an improved mechanical stability as a controlled drug delivery carrier that can undergo phase transition by the stimulation of ethanol–water mixture. For this aim, trimethoxysilane terminated poly(propylene glycol) by coupling of 3‐isocyanatopropyl‐triethoxysilane with the hydroxyl end groups of poly(propylene glycol) through urethane bonds was synthesized. Hybrid polymer gels prepared in the presence of tryptophan (Trp), as a model of drug, were characterized and gelation time of polymer network was obtained by monitoring the fluorescence emission of Trp in pre‐gel solution. Swelling, solvent uptake and release kinetic of polymer gels were evaluated depending on time. The diffusional exponents (n) and diffusion constants (k) of each gel were calculated by using the swelling kinetic data. The effect of precursors as a monomer on Trp release profile was analyzed. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42913.  相似文献   

12.
In this work, smart hollow microcapsules made of thermal‐/pH‐dual sensitive aliphatic poly(urethane‐amine) (PUA), sodium poly(styrenesulfonate) (PSS), and Au nanoparticles (AuNPs) for interdependent multi‐responsive drug delivery have been constructed by layer‐by‐layer (LbL) technique. The electrostatic interactions among PUA, PSS, and AuNPs contribute to the successful self‐assembly of hollow multilayer microcapsules. Thanks to the shrinkage of PUA above its lower critical solution temperature (LCST) and the interaction variation between PUA and PSS at different pH conditions, hollow microcapsules exhibit distinct pH‐ and thermal‐sensitive properties. Moreover, AuNPs aggregates can effectively convert light to heat upon irradiation with near‐infrared (NIR) laser and endow the hollow microcapsules with distinct NIR‐responsiveness. More importantly, the NIR‐responsive study also demonstrates that the microcapsule morphology and the corresponding NIR‐responsive drug release are strongly dependent on the pH value and temperature of the media. The results indicate that the prepared hollow PUA/PSS/Au microcapsules have the great potential to be used as a novel smart drug carrier for the remotely controllable drug delivery. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43008.  相似文献   

13.
Undecenoic acid functionalized thermo/pH responsive microgels, poly(N‐vinylcaprolactam‐co‐undecenoic acid) [poly(VCL‐co‐UA)], were synthesized by precipitation emulsion copolymerization. The microgels exhibit reversible thermo/pH responsive phase transition behavior, which can be tuned by varying the monomer feed ratio. The lower critical solution temperatures (LCSTs) of the materials are close to body temperature. As a result, when temperatures rise above ca. 37°C, a rapid thermal gelation process occurs, accompanied by a phase transition, resulting in expulsion of encapsulated compound. In vitro experiment evaluated its applicability as a drug carrier for controlled release of an anticancer agent (doxorubicin) and showed that the drug encapsulation efficiency (EE), releasing rate, and kinetics are dependent on the temperature and pH value as expected. Minimal cytotoxicity of the microgels was observed by a cytotoxicity assay using 3T3 fibroblast cells. Our finding suggests that the poly(VCL‐co‐UA) based microgels may be considered a promising candidate for temperature or pH‐controlled delivery of anticancer drugs. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41146.  相似文献   

14.
BACKGROUND: Chitosan is a polymer with good biocompatibility which makes it promising for potential applications in the field of drug delivery. A novel kind of copolymer, P(CS‐Ma‐graft‐NIPAm), was synthesized with chitosan (CS), maleic anhydride (Ma) and N‐isopropylacrylamide (NIPAm) by grafting and copolymerization. RESULTS: The copolymers were characterized using Fourier transform infrared, 1H NMR and ultraviolet spectroscopies, and the molecular weight and polydispersity were determined using gel permeation chromatography. The aqueous solution properties of the copolymer and the controlled delivery of coenzyme A from it were also studied. The results showed that the copolymer had temperature and pH sensitivities, and that the release of coenzyme A from the copolymer was dependent on the release medium, namely the concentration of the copolymer, pH and temperature. Higher concentrations of the copolymer absorbed more coenzyme A than lower ones. Increasing temperature accelerated coenzyme A release from the copolymer. Also, the pH of the solution had a significant impact on the release of coenzyme A. CONCLUSION: These results suggest that the novel copolymer could be used in drug delivery systems. Copyright © 2007 Society of Chemical Industry  相似文献   

15.
A novel dual‐responsive (light and pH) particle based on poly(methacrylic acid), poly(methacrylic acid)–poly[1‐(2‐nitrophenyl)ethane‐1,2‐diyl bis(2‐methylacrylate)]was prepared with the facile method of two‐step homogeneous radical polymerization with methacrylic acid as the monomer and 1‐(2‐nitrophenyl)ethane‐1,2‐diyl bis(2‐methylacrylate) as a photodegradable crosslinker. Photolytic assessments were conducted upon irradiation with a UV lamp; this led to particle disintegration caused by cleavage of the photolabile crosslinking points. The light‐dependent degradation was investigated through particle size changes, absorption spectra variations, surface morphology changes, Fourier transform infrared spectroscopy, and the release of Nile red from the particles after irradiation. The pH dependence of the particle systems induced by the protonation and deprotonation of poly(methacrylic acid) was also confirmed by fluorescence spectroscopy. The triggered release of fluorescein diacetate was investigated to demonstrate that the release behavior in cells was light dependent. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44003.  相似文献   

16.
Doxorubicin (DOX) is a widely used chemotherapeutic drug for the treatment of several types of cancers, which has limitation in clinical applications because of severe heart toxicity. Herein, to reduce the fast clearance from the blood system and the severe systemic toxicity caused by the nonspecific protein adsorption, a pH‐sensitive drug delivery system with higher drug conjugated content was prepared by conjugating DOX onto hydroxyethyl starch (HES) with a pH‐sensitive hydrazone bond. In normal physiological environment, the release of DOX conjugated onto HES was slight which could be neglected without any side effect. However, in an acidic environment mimicking the tumor microenvironment, this pH‐sensitive hydrazone linkage provided a controlled and sustained release of DOX over a period of more than 3 days. The conjugates had good biocompatibility, long circulation, and lower cytotoxicity, which could efficiently be transferred into HeLa and HepG2 cells and release the conjugated drug. Based on these promising properties, these HES–DOX conjugates outline the significant potential for future biomedical application in the controlled release of antitumor drugs. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42778.  相似文献   

17.
Novel thermally and magnetically dual‐responsive mesoporous silica nanoparticles [magnetic mesoporous silica nanospheres (M‐MSNs)–poly(N‐isopropyl acrylamide) (PNIPAAm)] were developed with magnetic iron oxide (Fe3O4) nanoparticles as the core, mesoporous silica nanoparticles as the sandwiched layer, and thermally responsive polymers (PNIPAAm) as the outer shell. M‐MSN–PNIPAAm was initially used to control the release of sophoridine. The characteristics of M‐MSN–PNIPAAm were investigated by transmission electron microscopy, Fourier transform infrared spectroscopy, X‐ray diffraction, thermogravimetry, N2 adsorption–desorption isotherms, and vibrating specimen magnetometry analyses. The results indicate that the Fe3O4 nanoparticles were incorporated into the M‐MSNs, and PNIPAAm was grafted onto the surface of the M‐MSNs via precipitation polymerization. The obtained M‐MSN–PNIPAAm possessed superparamagnetic characteristics with a high surface area (292.44 m2/g), large pore volume (0.246 mL/g), and large mesoporous pore size (2.18 nm). Sophoridine was used as a drug model to investigate the loading and release properties at different temperatures. The results demonstrate that the PNIPAAm layers on the surface of M‐MSN–PNIPAAm effectively regulated the uptake and release of sophoridine. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40477.  相似文献   

18.
Polymer solutions that gel in response to changes in temperature and pH are of interest for various forms of drug delivery, and it is desirable to increase swelling for diffusion‐controlled release without bringing the lower critical solution temperature (LCST) above 37°C. N‐isopropylacrylamide (NIP) was polymerized with maleic acid (MAc), a diprotic acid, and acrylic acid (AAc), a monoprotic acid, to compare swelling and temperature response with changes in pH. For samples with equal acid contents and almost identical LCST responses to pH, poly(N‐isopropylacrylamide‐co‐maleic acid) (pNIP MAc) demonstrated greater swelling than poly(N‐isopropylacrylamide‐co‐acrylic acid) (pNIP AAc). The LCST increase for MAc occurred at a pH corresponding to the deprotonation of almost all of the first acid groups. Further increases in pH led to the deprotonation of the second ? COOH and only served to increase the charge concentration at a given location. These results provide strong support for the theory that LCST results largely from uninterrupted chain lengths of NIP and that swelling results from the actual charge density of acid groups along the chain. Because the use of a diprotic acid copolymer allows swelling to be decoupled from LCST, pNIP MAc may be an appropriate candidate for pH‐sensitive drug‐delivery applications. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 2110–2116, 2004  相似文献   

19.
pH‐sensitive nanogels (NGs) based on poly(aspartic acid‐graft‐imidazole)‐poly(ethylene glycol) were developed using linear PEG with different molecular weights (2000 and 4000 Da) as crosslinkers. The pH‐sensitive NGs showed reversible size changes during continuously alternating pH changes. The anticancer treatment potential of pH‐sensitive NGs was studied using a model drug, irinotecan (IRI). IRI‐loaded NGs (ILNs) showed different drug release kinetics in acidic versus neutral pH, in addition to pH‐dependent cytotoxicity. Due to its longer crosslinker, ILN 4 (crosslinked with PEG 4000) showed faster IRI release and a greater magnitude of IRI release than ILN 2 (crosslinked with PEG 2000), resulting in greater cytotoxicity against HCT 116 colorectal cancer cells. These pH‐sensitive NGs could potentially be used in cancer treatment by mediating the accumulation and release of IRI from ILNs in the acidic tumor environment and by reducing systemic toxicity due to reversible swelling–shrinkage. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46268.  相似文献   

20.
Stimulus-responsive polymeric nanoparticles have great potential as nanocarriers. Here, triple-stimuli-responsive core-crosslinked (CCL) micelles were developed that were convenient for drug delivery by taking advantage of dual-redox and UV light synergistic triggers. Amphiphilic block copolymers methoxy poly(ethylene glycol)-b-poly(3-azido-2-hydroxy-propyl methacrylate-co-ο-nitrobenzyl methacrylate) [mPEG-b-P(GMA-N3-co-NBM)] were synthesized via atom transfer radical polymerization and ring-opening reaction of ethylene oxide; these block copolymers can spontaneously self-assemble into noncrosslinked (NCL) micelles. Afterward, CCL micelles were prepared using an alkyne-functionalized crosslinking agent. Furthermore, the CCL micelles showed an excellent Nile Red dye molecule encapsulation, light and dual-redox-responsive performance, and increasing release rate of the dye as the concentration of glutathione and light irradiation increased. The triple-stimuli-responsive CCL micelles showed excellent stability and controllable release compared to NCL micelles. Therefore, we have developed a new smart nanocarrier, and the triple-stimuli-responsive CCL micelles could also be a potential delivery system in cancer therapy. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47946.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号