首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, non-conductive ethylene–propylene–diene monomer (EPDM)/barium titanate (BaTiO3) composites with high dielectric constant and low dielectric loss are prepared. Fourier transform infrared (FT-IR) spectra show the chemical adherence of vinyltrimethoxysiloxane oligomer (SG-Si6490) to the surface of BaTiO3 particles. Functionalised BaTiO3 particles have better compatibility with EPDM matrix and promote the cure properties of EPDM composites. It is found that when the content of BaTiO3 increases to 40?vol.-%, the resistivity, rheological, dielectric and mechanical properties of EPDM/BaTiO3 composites change drastically. The dielectric constant of EPDM with 50?vol.-% BaTiO3 at 10?MHz is 15, which is 7.5 times higher than that of EPDM control. Meanwhile, the volume resistivity results show EPDM with 50?vol.-% BaTiO3 is still non-conductive. As for mechanical properties, the tensile and tear strength of EPDM control increase from 1.45?MPa and 8.73?kN?m?1 to 10.02?MPa (about seven times higher) and 24.65?kN?m?1 (about three times higher), respectively.  相似文献   

2.
In this study, the characteristics of the polyimide/BaTiO3 composite films with various amounts of BaTiO3 were evaluated. Modifier 1-methoxy-2-propyl acetate was added during composite preparation to disperse the BaTiO3 particles in polyimide matrix. Conversion of polyamic acid (PAA) to polyimide was not completed for the composite film with a high BaTiO3 loading (90 wt%). Dielectric constant of the film increases from 3.53 to 46.50, at the sweep frequency of 10 kHz, as the BaTiO3 content increases from 0 to 90 wt% (0–67.5 vol.%), which is mainly due to the relatively high dielectric constant of BaTiO3 particles in the polyimide matrix. The dielectric losses at 10 kHz is ranging from 0.005 to 0.015, which is due to the switching of the domain wall. Water absorption decreases considerably with increasing BaTiO3 content. With 10 wt% (2.5 vol.%) BaTiO3 addition, the water absorption of the composite film reduces 45% from that of pure polyimide. Also, high loading of BaTiO3 is not beneficial to reduce the water absorption of the composite film.  相似文献   

3.
Flexible layer–layer poly(ethylene phthalate) (PET)/BaTiO3 composite films with enhanced dielectric permittivity were fabricated by spin coating method, consisting of PET substrate film layer and modified BaTiO3/acrylic resin hybrid coating layer. The thickness of coating layer was less than 3 μm (about 2% of PET film thickness), and therefore, the PET/barium titanate (BT) composite films remained flexible even at high volume fraction of BaTiO3 fillers. The volume contents of BaTiO3 were varied from 0 to 80%, and the solid contents of BaTiO3/acrylic resin were in the range of 51.8–72.9%. Scanning electron microscopy showed strong interaction of finely dispersed BaTiO3 particles with acrylic resin. Morphological profile also displayed uniform coating layer of modified BaTiO3/acrylic resin and its strong adhesion with PET film. The dielectric constant of the PET/BaTiO3 composite films increased by about 26% at 60 vol % BaTiO3 loading when compared with the pristine PET film, whereas the dielectric loss decreased slightly. In addition, PET‐grafted poly(hydroxylethyl methacrylate) brushes were used as substrate to introduce covalent bonding with the coating layer. Further enhancement of dielectric constant and reduction of dielectric loss were realized when compared with the composite films with bare PET substrate. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42508.  相似文献   

4.
Polyvinylidene fluoride (PVDF)-modified X7R-type BaTiO3 (BTO) composites were prepared by hot pressing, and the dielectric properties were investigated. The dielectric constant of the PVDF–BTO composites at 1 kHz increased significantly with increasing the volume fraction of BTO up to 0.5, and good temperature stability of dielectric constant was obtained for the composites, which benefited from the temperature-stable dielectric constant of the modified BaTiO3. Two significant dielectric relaxations were observed for the PVDF–BTO composites, and they fit the Vogel–Fulcher and Arrhenius fittings, respectively.  相似文献   

5.
Eduard A. Stefanescu 《Polymer》2011,52(9):2016-2024
Fiberglass-reinforced polymer composites were investigated for potential use as structural dielectrics in multifunctional capacitors that require simultaneous excellent mechanical properties and good energy storage characteristics. Composites were fabricated employing poly(methyl methacrylate), PMMA, as the structural matrix. While barium titanate (BaTiO3) nanopowder was added to the composites for its high room temperature dielectric constant, fiberglass was employed to confer high stiffness. A conductive polymer blend of poly (3,4-ethylenedioxythiophene) and polystyrene sulfonate (PEDOT:PSS) was used to coat the BaTiO3 nanoparticles with the purpose of further elevating the dielectric constant of the resultant PMMA-composites. FTIR spectroscopy, TGA and SEM measurements were conducted to prove the successful coating of BaTiO3 nanoparticles with the PEDOT:PSS blend. TEM measurements revealed a good dispersion of coated nanoparticles throughout the PMMA matrix. The fiberglass-reinforced-PMMA composites containing neat and coated BaTiO3 were found to exhibit excellent stiffness. In addition, the use of PEDOT:PSS in conjunction with BaTiO3 was observed to improve the dielectric constant of the composites. Finally, the dielectric constant of the structural composites was found to vary only slightly with temperature.  相似文献   

6.
This work systematically investigates the effect of modifier polyvinylpyrrolidone (PVP) on the microstructure, dielectric and energy storage properties of BaTiO3/PVDF composites. The results demonstrate that the BaTiO3 nanoparticles modified by PVP are uniformly dispersed in the composites, and the defects including cracks and voids are obviously decreased in contrast to the composites with unmodified BaTiO3 nanoparticles. Due to the enhanced interfacial polarization, the composites with BaTiO3@PVP show improved dielectric properties compared with the composites with unmodified BaTiO3 nanoparticles. For instance, at 1 kHz, the dielectric constant and dielectric loss of the composite with 50 vol% of BaTiO3@PVP nanoparticles are 80.4 and 0.085, while of which the BaTiO3/PVDF are 35 and 0.265, respectively. The discharge energy density of the composites is largely improved with PVP engineered BaTiO3 nanoparticles. The composite with 30 vol% BaTiO3@PVP achieves a discharged energy density of 4.06 J/cc at 240 kV/mm, which is 116% larger than that of pure PVDF (1.88 J/cc). This research provides an effect modifier to prepare high performance dielectric materials.  相似文献   

7.
Conducting polyaniline (PAni)–antimony trioxide (Sb2O3) composites with different weight percentages (wt%) of Sb2O3 in PAni have been synthesized by in situ chemical oxidative polymerization. The composites were structurally and morphologically characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Measurements of electromagnetic interference (EMI) shielding, complex permittivity and microwave absorbing as well as reflecting properties of the composites were carried out in the frequency range of 8–18 GHz, encompassing the microwave X and Ku bands of practical relevance. All the computations are based on microwave scattering parameters measured by transmission line waveguide technique. It is observed that the presence of Sb2O3 in the PAni matrix affects the electromagnetic shielding and dielectric properties of the composites at microwave frequencies. The composites have shown better shielding effectiveness (SE) in both the X (SE in the range ?18 to ?21 dB) and Ku (?17.5 to ?20.5 dB) bands. ε′ and ε′′ values of the PAni–Sb2O3 composites are in the range of 64–37 and 63–30, respectively, in the frequency range of 8–18 GHz. Dielectric measurements indicated the decrease in dielectric constant with the increase in wt% of Sb2O3. The results obtained for the reflection and absorption coefficients indicated that PAni–Sb2O3 composites exhibit better electromagnetic energy absorption throughout the X and Ku bands. The results indicated that PAni–Sb2O3 composites can be used as potential microwave absorption and shielding materials.  相似文献   

8.
《Ceramics International》2022,48(14):20102-20109
Flexible polymer composites with high dielectric constants and low dielectric losses at high frequencies are highly desired in microwave and RF applications. However, a high dielectric constant is often obtained at the expense of flexibility because a high loading of filler is needed. In this work, we synthesize a core-shell structured 1D filler by coating high-dielectric-constant PbTiO3 onto the surface of low-thermal-expansion-coefficient SiC nanofibers, which are then incorporated into the epoxy matrix together with BaTiO3 nanoparticles to form the multi-phase BaTiO3/SiC@PbTiO3/epoxy composite film. A high dielectric constant (35 at 100 Hz and 20 at 5 GHz) and a low dielectric loss (0.023 at 100 Hz and 0.13 at 5 GHz) are achieved as the filling content of SiC@PbTiO3 and BaTiO3 is 5.24 wt% and 80 wt%, respectively. Prediction models of the effective dielectric constant of polymer-based composites reveal that a continuous polarization network is constructed in the composites owing to the physical contact between BaTiO3 and PbTiO3. The construction of the multi-phase filler provides a feasible way to effectively adjust and improve the dielectric properties of polymer-based composite films.  相似文献   

9.
Acrylonitrile–butadiene rubber (NBR), a synthetic rubber having C≡N dipoles, was chosen as a polymer matrix with a higher dielectric constant than other non-polar rubber like silicone rubber or ethylene–propylene–diene monomer. Barium titanate (BaTiO3), as a ferroelectric material, with a high dielectric constant and low dielectric loss was selected as a main filler to further enhance the dielectric constant of NBR. An effective silane coupling agent (KH845-4), selected from five types of silane coupling agents with different characteristic functional groups, was used to modify the surface of BaTiO3 particles to enhance its interfacial adhesion to the matrix. Fourier transform infrared spectroscopy (FTIR) was used to verify the successful modification. The addition of BaTiO3 obviously enhanced the dielectric constants. In particular, an uncommon pattern of dielectric loss has been displayed and analyzed in this paper. Nevertheless, the reinforcing effect of mechanical strength of the NBR/treated BaTiO3 composites is limited. On this basis, the addition of nanosilica (SiO2), replacing part of NBR, improved the mechanical strength. Confirmed by scanning electron microscopy (SEM), the SiO2 and treated BaTiO3 particles were dispersed well in the NBR matrix. The tensile strength was increased from 4.33 to 6.12 MPa when SiO2 accounted for 4%. Moreover, the curing characterizations, crosslinking density, resistivity, and oil resistance were evaluated. This composite material can be used in manufacturing electronic devices, which are subjected to oily environments for a long time.  相似文献   

10.
Flexible composites with a high electrical permittivity are pursued in materials research, due to their potential applications in electrical devices. We synthesized such ceramic‐polymer composites from BaTiO3 and epoxidized natural rubber. The influence of BaTiO3 concentration on cure characteristics, mechanical (static & dynamic), dielectric, and morphological properties of the composites was investigated. The tensile strength and elongation at break decreased with BaTiO3 loading, while the storage modulus and permittivity of composites increased. As for dynamic electrical properties, the dielectric loss factor and tan δ of the composites showed a maximum peak within the frequency range extending up to 105 Hz, reflecting the relaxation process of the polymer matrix. All of the composites showed two peaks in the frequency dependence of electric modulus, due to conductivity and molecular relaxation. Scanning electron microscopy micrographs confirmed the 0–3 structure of composites, with isolated BaTiO3 particles.  相似文献   

11.
In this study, mica, treated by three types of coupling agents, isopropyl trioleic titanate (NDZ105), 3‐aminopropyltriethoxysilane (KH550), and vinyltrimethoxysiloxane homopolymer (SG‐Si6490), were utilized to improve the properties of ethylene propylene diene monomer (EPDM)/barium titanate (BaTiO3) composites. It is found that the addition of untreated mica can increase the complex viscosity, while the KH550 modified mica can reduce the complex viscosity. Compared to single usage of coupling agent SG‐Si6490, the hybrid usage of KH550 and SG‐Si6490 can further increase the tensile strength of EPDM/BaTiO3/SG‐Si6490 treated mica (70/20/10) from 9.10 to 11.01 MPa (22% increase). The untreated mica can increase the interfacial polarity and improve the dielectric constant of EPDM/BaTiO3 (70/30) from 7 to 9 at 40 MHz (28% increase). Moreover, the KH550 treated mica can enhance the thermal conductivity of EPDM/BaTiO3 (70/30) from 0.323 W m?1 K?1 to 0.446 W m?1 K?1 (38% increase). In the meantime, the increased crosslink density caused by coupling agents can increase the volume resistivity of EPDM composites. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 44833.  相似文献   

12.
《Ceramics International》2022,48(1):832-836
Percolative composites with negative permittivity have attracted widespread attentions due to their great potential in electromagnetic shielding and microwave devices. Targeting at achieving epsilon-negative properties, the percolative graphite/barium titanate (GR/BaTiO3) composite is herein designed and prepared using hot-pressing sintered process. It's found that the plasma oscillations of delocalized electrons result in the epsilon negative permittivity behaviors when the GR contents exceeds the 2 wt% (percolation threshold), and frequency dependence of the negative permittivity which is in well agreement with the Drude model. Meanwhile, it's demonstrated that the ac conductivity represents a typical metal-like behavior as the conductive networks formed within the composites by the increasing GR loadings. Moreover, the equivalent circuit analysis reveals the relationships between capacitive-inductive transition and the conversion of permittivity changing from positive to negative. This work provides effective possibility for developing excellent dielectric properties of percolative GR/BaTiO3 composite for capacitors and coil-less electrical inductors applications.  相似文献   

13.
《Ceramics International》2022,48(16):22845-22853
Effective electromagnetic interference (EMI) shielding materials have garnered substantial interest for their efficacy in attenuating electromagnetic wave energy, ensuring data confidentiality, ensuring the operational stability of fragile electronic systems. To begin, artificially cultured diatom frustules (DF)-derived porous silica (DFPS) skeletons were constructed as templates in this study. Porous ceramics hot-pressed at 800 °C displayed a high compressive strength with a high specific surface area due to their three-dimensional (3D) multilayered and porous structures. Then, mechanically robust Ti3C2Tx/DFPS composites with exceptional EMI shielding performance were fabricated by immersing porous DF-based ceramics into Ti3C2Tx solutions and annealing in an argon environment to increase the materials’ shielding efficiency (SE). The EMI SE of composites hot-pressed at 800 °C achieved the maximum EMI SE of 43.2 dB in the X-band and a compressive strength of 67.5 MPa, establishing a hitherto unreported balance of mechanical characteristics and shielding performance. Prolonged transmission paths, multiple dissipation, scattering and reflection of electromagnetic energy were achieved using a well-maintained hierarchical porous silica framework decorated with MXene, with adsorption caused by surface MXene serving as the primary shielding mechanism for the composites. Due to their superior overall performance, MXene/DFPS EMI shielding composites have a bright future in the aircraft sector as delicate electronic device components.  相似文献   

14.
This work aims to investigate the dielectric potential of microcrystalline cellulose, a green biosourced material, as a third constituent in the three‐phase composites based on ethylene vinyl acetate‐vinyl ester of versatic acid (EVA‐VeoVa) terpolymer and BaTiO3. For that, new green three‐phase composites were prepared using an economic and green process, with simple implementation at room temperature and using water as a solvent. Compared with the binary composite EVA‐VeoVa/BaTiO3, the three‐phase composite EVA‐VeoVa/BaTiO3/microcrystalline cellulose showed an improvement of the BaTiO3 particles dispersion, enhanced relative permittivity, and reduced dielectric loss, which explains the significance of this study. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46147.  相似文献   

15.
Composites of nano-sized barium titanate (BaTiO3) with volume fractions up to 0.5 and poly(butylene terephthalate) (PBT) or linear low-density polyethylene (LLDPE) were made via extrusion. Scanning electron microscopy demonstrated that BaTiO3 is well dispersed in the polymer matrices. The crystalline content (DSC) and thermal stability (TGA) of both polymers decreased with increasing BaTiO3 loading. Dielectric properties of the composites were measured using a vector network analyzer. Both dielectric permittivity and tangent loss increased with increasing BaTiO3 content. At 2.45 GHz, the dielectric permittivity for 48 vol% BaTiO3-filled LLDPE and 43 vol% BaTiO3-filled PBT was 25 and 21.2, respectively. There was a good fit between the Lichtenecker model and experimental data obtained up to a certain value, with the permittivity variations being dependent on volume fraction. The improved dielectric performance achieved on inclusion of BaTiO3 confirms both composite systems as potential candidates for microwave frequency capacitor applications.  相似文献   

16.
Barium titanium oxide/polyaniline (BaTiO3/PANI) nano-composites were obtained in two different processes by the use of PANI and BaTiO3 nano-particles synthesized by the sol–gel technique. FT-IR, XRD, SEM and TGA measurements were taken for structural properties of all samples. The molecular interaction between BaTiO3 nanoparticles and PANI was between the H atoms in the N–H bond and the OH molecules in the solution environment. The said interaction was coordinated with BaTiO3 molecules over O atoms. XRD results confirmed that the synthesized BaTiO3 had a characteristic cubic perovskite structure and that its structure had not changed. TGA results revealed that the composites became more stable as the BaTiO3 amount increased. The dielectric measurement results are consistent with the structural results at higher frequencies. Dielectricity increased as BaTiO3 ratio increased in the environment. The change in the real part of the dielectric permittivity by frequency was stable at high frequencies. According to these results, it is concluded that the composite samples could have very high electromagnetic wave absorption values at higher frequencies (GHz).  相似文献   

17.
The influence of HAF carbon black and BaTiO3 ceramic powder contents in SBR vulcanizates on the dielectric constant (ε′) at different frequencies and at fixed temperature of 303 K is studied well in this article. The temperature dependence of the ac conductivity (σac) was also studied. ε′ appreciably decreases as frequency increased for both filled and unfilled SBR vulcanizates. At each frequency, ε′ gradually decreased with BaTiO3 loading, but its change at any fixed frequency with BaTiO3 filler loading is not uniform. For HAF group ε′ (at loading ≥ 40 phr), drops rapidly with frequency. Meanwhile, it increased appreciably beyond a certain HAF filler loading (≈ 20 phr). Experimental values of the dielectric constant of both BaTiO3 and HAF contents were compared with those calculated by using Tsangaris, Clausius and Bruggman models. Tsangaris model with simple modifications was applied and a fairly good agreement was obtained. The HAF particles or aggregates was found to take the shape of oblate ellipsoids with the minor axes parallel to the applied frequency as detected from the decreasing behavior of the depolarizing factor (Y) with HAF contents. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 2227–2234, 2007  相似文献   

18.
Microwave dielectric properties of PTFE/CaTiO3 polymer ceramic composites   总被引:1,自引:0,他引:1  
CaTiO3 ceramic powder filled polytetrafluoroethylene (PTFE) composites with various filler volume fractions up to 60 vol.% were prepared. The effects of volume fraction of the ceramic filler on the microstructure and microwave dielectric properties of the composites were investigated in detail. As the volume fraction of the ceramic filler increases, the dielectric constant (?r) and the temperature coefficient of resonant frequency (τf) of composites increase, while the product of quality factor and frequency (Q × f) decreases. Composites with 40 vol.% CaTiO3 exhibited good microwave dielectric properties: ?r = 13 at ∼5 GHz, Q × f = 930 GHz, and τf = 260 ppm/°C. Different mixing rules were used to predict the dielectric constant of composites, and it was found that the dielectric constants predicted by Effective Medium Theory (EMT) were in good agreement with experimental data.  相似文献   

19.
Barium Titanate–Kaolinite composites were prepared systematically by conventional solid-state method. The crystal structure and dielectric properties of samples were investigated by XRD and dielectric measurements, respectively. XRD results show that new phase BaAl2Si2O8 was formed as kaolinite added into BaTiO3. The 10 wt% kaolinite addition led to a considerable reduction in sintering temperature and a strong densification. The dielectric constant of BaTiO3–Kaolinite composites tended to be stable with increasing of kaolinite content.  相似文献   

20.
Summary A series of thermosetting polymer/ceramic composites were prepared. Three kinds of thermosetting polymers, i.e. cyanate resin, bismaleimide resin, and epoxy resin, were used as matrixes, and BaTiO3 particles were as fillers. The dielectric properties of these composites were investigated. Experimental data of the dielectric constants were fitted to several theoretical equations in order to obtain the best-fitting equations of the dielectric constants of these composites. The result indicates that the dielectric constants of composites all increase with the increase of BaTiO3 content. Using bismaleimide resin and epoxy resin as matrixes, the dielectric losses both increase obviously as the amount of BaTiO3 particles is increased, but the dielectric loss of cyanate/BaTiO3 composite decreases. With the increase of the frequency, the variation ranges of the dielectric constant and dielectric loss of cyanate/BaTiO3 composite are both the smallest. The predications of the effective dielectric constants by Lichterecker mixing rule are in good agreement with experiment data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号