首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
A novel charring agent (CNCA‐DA) containing triazine and benzene ring, using cyanuric chloride, aniline, and ethylenediamine as raw materials, was synthesized and characterized. The effects of CNCA‐DA on flame retardancy, thermal degradation, and flammability properties of polypropylene (PP) were investigated by limited oxygen index (LOI), vertical burning test (UL‐94), thermogravimetric analysis (TGA), and cone calorimeter test (CCT). The TGA results showed that CNCA‐DA had a good char forming ability, and a high initial temperature of thermal degradation; the char residue of CNCA‐DA reached 18.5% at 800°C; Ammonium polyphosphate (APP) could improve the char residue of APP/CNCA‐DA system, the char residue reached 31.6% at 800°C. The results from LOI and UL‐94 showed that the intumescent flame retardant (IFR) containing CNCA‐DA and APP was very effective in flame retardancy of PP. When the mass ratio of APP and CNCA‐DA was 2 : 1, and the IFR loading was 30%, the IFR showed the best effect; the LOI value reached 35.6%. It was also found that when the IFR loading was only 20%, the flame retardancy of PP/IFR can still pass V‐0 rating in UL‐94 tests, and its LOI value reached 27.1%. The CCT results demonstrated that IFR could clearly change the decomposition behavior of PP and form a char layer on the surface of the composites, consequently resulting in efficient reduction of the flammability parameters, such as heat release rate (HRR), total heat release (THR), smoke production rate (SPR), total smoke production (TSP), and mass loss (ML). © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

2.
Piperazine spirocyclic phosphoramidate (PSP), a novel halogen‐free intumescent flame retardant, was synthesized and used to improve the flame retardancy and dripping resistance of polypropylene (PP) combined with ammonium polyphosphate (APP) and a triazine polymer charring‐foaming agent (CFA). The optimum flame‐retardant formulation was PSP:APP:CFA = 3:6:2 (weight ratio). The flammability and thermal behavior of the (intumescent flame‐retardant)‐PP (IFR‐PP) were investigated via limiting oxygen index (LOI), vertical burning tests (UL‐94), thermogravimetric analysis, and cone calorimetry (CONE). The results indicated that the IFR‐PP had both excellent flame retardancy and anti‐dripping ability. The optimum flame‐retardant formulation gave an LOI value of 39.8 and a UL‐94 V‐0 rating to PP. Moreover, both the heat release rate and the total heat release of the IFR‐PP with the optimum formulation decreased significantly relative to those of pure PP, according to the cone calorimeter analyses. The residues of IFR‐PP obtained after CONE tests were observed by scanning electron microscopy, and it was found that the char yield was directly related to the flame retardancy and anti‐dripping behavior of the treated PP. J. VINYL ADDIT. TECHNOL., 20:10–15, 2014. © 2014 Society of Plastics Engineers  相似文献   

3.
Amino trimethylene phosphonic acid melamine salt (MATMP) was synthesized and used as acid source and blowing agent in intumescent flame‐retarded polypropylene (PP); its compositions were characterized by Fourier transform infrared spectroscopy and X‐ray powder diffraction. An intumescent flame retardant (IFR) system composed of MATMP, pentaerythritol (PER), and PP was tested by limiting oxygen index (LOI), UL‐94, cone calorimeter tests, and thermogravimetric analysis and compared with an ammonium polyphosphate (APP)/PER system. The results showed that MATMP had better water resistance than APP, the LOI value of PP/MATMP/PER composite can reach 30.3%, and a UL‐94 V‐0 rating can be reached at 25 wt % IFR loading. The amount of residual char of IFR MATMP/PER was 20.3 and 9.5 wt % at 400 and 600 °C, respectively. A thermooxidative degradation route and a possible flame‐retardant mechanism of IFR were proposed according to the analysis of evolved gases and residual chars. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46274.  相似文献   

4.
A novel intumescent flame retardant (IFR), containing ammonium polyphosphate (APP) and poly(tetramethylene terephthalamide) (PA4T), was prepared to flame‐retard acrylonitrile‐butadiene‐styrene (ABS). The flame retardation of the IFR/ABS composite was characterized by limiting oxygen index (LOI) and UL‐94 test. Thermogravimetric analysis (TGA) and TGA coupled with Fourier transform infrared spectroscopy (TG‐FTIR) were carried out to study the thermal degradation behavior of the composite and look for the mechanism of the flame‐retarded action. The morphology of the char obtained after combustion of the composite was studied by scanning electron microscopy (SEM). It has been found the intumescent flame retardant showed good flame retardancy, with the LOI value of the PA4T/APP/ABS (7.5/22.5/70) system increasing from 18.5 to 30% and passing UL‐94 V‐1 rating. Meanwhile, the TGA and TG‐FTIR work indicated that PA4T could be effective as a carbonization agent and there was some reaction between PA4T and APP, leading to some crosslinked and high temperature stable material formed, which probably effectively promoted the flame retardancy of ABS. Moreover, it was revealed that uniform and compact intumescent char layer was formed after combustion of the intumescent flame‐retarded ABS composite. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

5.
A novel halogen‐free intumescent flame retardant, spirophosphoryldicyandiamide (SPDC), was synthesized and combined with ammonium polyphosphate (APP) to produce a compound intumescent flame retardant (IFR). This material was used in polypropylene (PP) to obtain IFR‐PP systems whose flammability and thermal behavior were studied by the limiting oxygen index (LOI) test, UL‐94, thermogravimetric analysis, and cone calorimetry. In addition, the mechanical properties of the systems were investigated. The results indicated that the compound intumescent flame retardant showed both excellent flame retardancy and antidripping ability for PP when the two main components of the IFR coexisted in appropriate proportions. The optimum flame retardant formulation was SPDC:APP = 3:1, which gave an LOI value of 38.5 and a UL‐94 V‐0 rating. Moreover, the heat release rate, production of CO, smoke production rate, and mass loss rate of the IFR‐PP with the optimum formulation decreased significantly relative to those of pure PP, according to the cone calorimeter analysis. The char residues from the cone calorimetry experiments were observed by scanning electron microscopy, which showed that a homogeneous and compact intumescent char layer was formed. J. VINYL ADDIT. TECHNOL., 2010. © 2010 Society of Plastics Engineers  相似文献   

6.
The flame retardancy of low‐density polyethylene (LDPE) treated with complex flame retardant composed of ultrafine zinc borate (UZB) and intumescent flame retardant (IFR) have been investigated by limited oxygen index (LOI), UL‐94 test, thermogravimetric analysis (TGA), cone calorimeter test, scanning electron micrograph (SEM), energy‐dispersive spectrometer (EDS), and X‐ray diffraction (XRD). The results of LOI and UL‐94 test indicate the desired flame retardancy of LDPE is obtained when the mass ratio of UZB to IFR is 4.2 : 25.8 and the complex flame retardant mass content is 30% (based on LDPE). The results of cone calorimeter show that heat release rate (HRR) peak, total heat release (THR), and mass loss of LDPE/IFR/UZB decrease substantially when compared with those of LDPE/IFR. TGA results show that the residue of LDPE/IFR/UZB increases obviously than that of LDPE/IFR when the temperature is above 600°C. SEM indicates the quality of char forming of LDPE/IFR/UZB is superior to that of LDPE/IFR. The results of EDS and XRD indicate that boron orthophosphate (BPO4) and zinc‐contained compounds are formed in the residual char and these substances may play an important role in stabilizing the intumescent char structure and decrease the degradation speed substantially when subjected to high temperature. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3667–3674, 2007  相似文献   

7.
A char‐forming agent poly(4,6‐dichloro‐N‐hydroxyethyl?1,3,5‐triazin‐2‐amine‐1,6‐diaminohexane) (CNCO‐HA) containing triazine rings was chosen for improving the flame retardant of low density polyethylene (LDPE). The synergistic effect of CNCO‐HA and Ammonium polyphosphate (APP) on the flame retardancy and char‐forming behavior of LDPE were investigated. The limited oxygen index (LOI) and vertical burning test (UL‐94) results indicated the optimal weight ratio of APP to CNCO‐HA was 3:1, and the LOI value of composite reached 31.0% with 30% intumescent flame retardant (IFR) loading. The cone calorimeter test analysis revealed that IFR presented excellent char forming and smoke suppression ability, and resulted in the efficient decrease of combustibility parameters. The thermogravimetric analysis results demonstrated that IFR reduced the thermal degradation rate at main stage of degradation. Scanning electron microscopy observed that IFR promoted to form a compact and continuous intumescent char layer. The Laser Raman spectroscopy spectra showed that larger graphitization degree was formed to enhance the strength of char, and Fourier transform infrared results presented that P‐O‐C and P‐O‐P structures in the residue char were formed to improve shield performance of the char layer to obtain better flame retardant properties of the composite. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43950.  相似文献   

8.
Tris(2‐hydroxyethyl) isocyanurate (THEIC) was used as charring agent and combined with ammonium polyphosphate (APP) to form an intumescent flame retardant (IFR) for polypropylene (PP). The flame retardancy and combustion performance of PP/IFR composite was tested by limiting oxygen index (LOI), UL‐94 vertical burning test and cone calorimeter. The results showed that PP/IFR composite had highest LOI of 34.8 and obtained V‐0 rating when 30 wt % IFR was loaded and mass ratio APP/THEIC was 2 : 1. The peak heat release (PHRR) and total heat release (THR) values of PP composite containing FRs were remarkably reduced compared with that of pure PP. However, water resistant test demonstrated the PP/IFR composite had poor flame retardant durability, both the LOI value and UL‐94 V‐rating decreased when PP/IFR composite was soaked in water at 70°C after 36 h. The degradation process and the char morphology of IFR and PP/IFR composite were investigated by TGA and SEM images. The possible reaction path between APP and THEIC in the swollen process was proposed. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41214.  相似文献   

9.
In this study, phospholipidated β‐cyclodextrin (PCD) was obtained by the condensation between β‐cyclodextrin and phenyl phosphonic acid dichloride, which was characterized by Fourier transform infrared (FTIR) spectra, 1H‐NMR, and thermogravimetric analysis (TGA). The thermal stability and flame retardancy of the poly(lactic acid) (PLA) blends [PLA–ammonium polyphosphate (APP)–PCD] were measured by TGA coupled to FTIR spectroscopy, vertical burning test (UL‐94), limiting oxygen index (LOI), and cone calorimetry tests. The results show that the mass ratio and loading amount of APP and PCD affected the properties of PLA. When the loading of APP and PCD was 30 wt % and the mass ratio of APP to PCD was 5:1, the highest LOI value of 42.6% (that of neat PLA was 19.7%) and a UL‐94 V0 rating were achieved, and the reduction of the total heat release was greater than 80%. Even when the total amount of APP and PCD was decreased to 20 wt % with the same mass ratio, the flame‐retardant PLA still can achieved a UL‐94 V0 rating. The improved performance was explained by the formation of an intumescent, continuous, contact char layer. Moreover, the reaction between APP and PCD contributed to the improvement of the thermal stability of the char residue. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46054.  相似文献   

10.
A novel halogen‐free charring agent bi(4‐methoxy‐1‐phospha‐2, 6, 7‐trioxabicyclo [2.2.2]‐octane‐1‐sulfide) phenylphosphate (BSPPO) was synthesized from phenylphosphonic dichloride (PPDC), and 4‐hydroxymethyl‐1‐phospha‐2, 6, 7‐trioxabicyclo[2.2.2]‐octane‐1‐sulfide (SPEPA) which was synthesized from pentaerythritol and thiophosphoryl chloride in this article. The structure of BSPPO and SPEPA was characterized by Fourier transform infrared (FTIR), 1H‐NMR, 13C‐NMR, and 31P‐NMR. Combined with ammonium polyphosphate (APP) and melamine pyrophosphate (MPP), the flame retardance and dripping resistance of BSPPO added in polypropylene (PP) were investigated. The fire performance of the flame retardant PP system was investigated by limiting oxygen index (LOI), vertical burning test (UL‐94), and cone calorimeter. The thermal stabilities of the composites were studied by thermogravimetric analysis (TGA). The flame retardance mechanism was investigated by FTIR and scanning electronic micrograph (SEM). The mechanical properties and water solubility were also investigated. The residue of BSPPO is 40.6% at 600°C, which indicates BSPPO has excellent charring ability. The char residue of the polypropylene intumescent flame retardant (PP‐IFR) system is 22% at 600°C, which suggests that the flame retardation synergy of APP, BSPPO, and MPP is good. With the optimum formulation, the LOI of the IFR‐PP system is 32.0, and the UL‐94 is V‐0 rating. The heat release rate (HRR), total heat release (THR), smoke production rate (SPR), total smoke production (TSP), and mass loss rate (MLR) of IFR‐PP with the optimum formulation decrease significantly comparing to pure PP from cone calorimeter analysis. The FTIR and SEM results indicate that the char properties and the char yield have direct effect on the flame retardance and antidripping behaviors. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

11.
以二乙醇胺为侧链,三聚氯氰和哌嗪为主链,采用一锅法制备了一种多羟基三嗪成炭剂(CDP),将其与聚磷酸铵(APP)复配成膨胀阻燃剂(IFR)用于阻燃聚丙烯(PP)。采用垂直燃烧、极限氧指数、热失重分析等手段研究了阻燃PP的阻燃性能和热稳定性,并用扫描电子显微镜(SEM)对炭层形貌进行了研究。结果表明,APP和CDP具有良好的协同阻燃效果,当APP与CDP质量比为2∶1时,协同阻燃效果最优,仅添加20% IFR,即可使PP达到UL94 V–0级别,LOI为29.5%。热失重分析表明该复合材料在800℃具有最高的残炭量,SEM也显示形成了连续致密的炭层。  相似文献   

12.
A novel charring agent tris(2‐hydrooxyethyl) isocyanurate terephthalic acid ester, tetramer (TT4) was synthesized using tris(2‐hydrooxyethyl) isocyanurate and terephthalic acid as raw materials, and it was characterized by Fourier transformed infrared spectrometry and 1H‐NMR spectrum. It was combined with ammonium polyphosphate (APP) to form intumescent flame retardants for polylactide (PLA). The combustion properties and thermal stability of PLA/APP/TT4 composites were evaluated by UL‐94 burning tests, limiting oxygen index (LOI), and thermogravimetric analyses (TGA). It was found PLA with 30 wt % of APP/TT4 (5 : 1) achieved UL‐94 V‐0 rating and a 40.6 LOI value. Results from TGA demonstrated that APP/TT4 composites could retard the degradation of PLA above 410°C. The char residue at 500°C is higher than 24%, showing a good char forming ability. Moreover, the continuous and expansionary char layer observed from the SEM images proved good charring forming ability of TT4. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41218.  相似文献   

13.
Two charring agents tris (2‐hydrooxyethyl) isocyanurate terephthalic acid ester, (dimer/trimer mixture TT23, and tetramer TT4) were synthesized by using tris (2‐hydrooxyethyl) isocyanurate (THEIC) and terephthalic acid (TPA) as raw materials. These two charring agents were combined with ammonium polyphosphate (APP) to form intumescent flame retardants (IFR) for polylactide (PLA). The thermal stability of IFRs were tested by TGA, it is found that APP/TT4 mixture has a higher thermal stability and a better char forming ability than that of APP/TT23 mixture. The combustion properties and thermal stability of PLA/APP/TT23 and PLA/APP/TT4 composites were evaluated by UL‐94 burning tests, limiting oxygen index (LOI), cone calorimeter tests and TGA, the chemical structure of char residues were analyzed by FTIR and XPS. It can be concluded that PLA with 30 wt % of APP/TT4 (weight ratio 5 : 1) achieved the greatest flame retardancy. Moreover, the continuous and expansionary char layer observed from SEM images proved better char forming ability of TT4 than that of TT23. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42086.  相似文献   

14.
Kaolinite (Kaol) and halloysite nanotubes (HNT) are both aluminosilicate clays with similar chemical formulation and different microshapes. In this article, nanotubular HNT and nanoplate Kaol together were introduced into polypropylene (PP) containing intumescent flame retardant (IFR). The flammability of the PP composites was characterized by limiting oxygen index (LOI), vertical burning (UL‐94), and cone calorimeter tests (CCT). The results showed that for the composite with 75 wt % PP and 25 wt % IFR, its LOI was 31.0% and it obtained a UL‐94 grade of V‐2. For the composite of 75 wt % PP, 23.5 wt % IFR, and 1.5 wt % (Kaol/HNT = 9/1), its LOI increased to 36.9 and it obtained a UL‐94 grade of V‐0; at the same time, its peak heat release rate value in CCT decreased by 82.2% compared to neat PP. The thermostability analysis indicated that the mixture of Kaol/HNT could improve the thermostability and final char yield. The char residues were comprehensively analyzed by scanning electron microscopy and Fourier transform infrared spectroscopy. The results illustrated that the Kaol/HNT combination was beneficial to forming a crosslinked network and promoting formation of a compact char with higher strength. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46507.  相似文献   

15.
An attractive intumescent flame retardant epoxy system was prepared from epoxy resin (diglycidyl ether of bisphenol A), low molecular weight polyamide (cure agent, LWPA), and ammonium polyphosphate (APP). The cured epoxy resin was served as carbonization agent as well as blowing agent itself in the intumescent flame retardant formulation. Flammability and thermal stability of the cured epoxy resins with different contents of APP and LWPA were investigated by limited oxygen index (LOI), UL‐94 test, and thermogravimetric analysis (TGA). The results of LOI and UL‐94 indicate that APP can improve the flame retardancy of LWPA‐cured epoxy resins. Only 5 wt % of APP can increase the LOI value of epoxy resins from 19.6 to 27.1, and improve the UL‐94 ratings, reaching V‐0 rating from no rating when the mass ratio of epoxy resin to LWPA is 100/40. It is much interesting that LOI values of flame retardant cured epoxy resins (FR‐CEP) increase with decreasing LWPA. The results of TGA, FTIR, and X‐ray photoelectron spectroscopy (XPS) indicate that the process of thermal degradation of FR‐CEP consists of two main stages: the first stage is that a phosphorus rich char is formed on the surface of the material under 500°C, and then a compact char yields over 500°C; the second stage is that the char residue layer can give more effective protection for the materials than the char formed at the first stage do. The flame retardant mechanism also has been discussed according to the results of TGA, FTIR, and XPS for FR‐CEP. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

16.
Urea‐modified lignin was prepared according to the Mannich reaction and well characterized by Fourier transform infrared spectrometer, elemental ananlyses, and scanning electron microscopy (SEM). Ammonium polyphosphate (APP) and urea‐modified lignin were added into poly(lactic acid) (PLA) as a novel intumescent flame‐retardant (IFR) system to improve flame retardancy of PLA. The flammability of IFR–PLA composites was studied using limiting oxygen index, UL‐94 vertical burning method and cone calorimeter test, and their thermal stability was evaluated by thermogravimetric analysis. The results showed that the urea‐modified lignin combined with APP exhibited much better flame retardancy and thermal stability than that of the combination of virgin lignin and APP. The improvement may be attributed to the better char morphology with more phosphoric char evidenced by SEM and X‐ray photoelectron spectroscopy. POLYM. ENG. SCI., 2012. © 2012 Society of Plastics Engineers  相似文献   

17.
A novel flame retardant heax‐[N,N′,N″‐tris‐(2‐amino‐ethyl)‐[1,3,5] triazine‐2,4,6‐triamine] cyclotriphosphazene (HTTCP) containing phosphazene and triazine groups was synthesized and characterized by Fourier transform infrared spectroscopy (FTIR), solid‐state 1H and 13C nuclear magnetic resonance (NMR) spectroscopy. HTTCP was applied to PLA matrix. The results of thermal gravimetric analysis (TGA), the limited oxygen index (LOI), and cone calorimeter test indicated that the HTTCP enhanced the thermal stability and flame retardant properties of PLA. When the mass fraction of HTTCP was 25 wt %, the PLA composite acquired a LOI value of 25.2% and the lower pk‐HRR at 290 kW/m2. The excellent flame retardancy of HTTCP was attributed to the group synergistic effect between phosphazene and triazine groups. However, when combined HTTCP with APP (the total amount remaining 25 wt %, the ratio of HTTP to APP are 1:1 and 1:2), high values of LOI (over 40%) and UL94 V‐0 rating without dripping reached simultaneously. Meanwhile, the heat release rate, total heat release and mass loss rate were all decreased dramatically. Scanning electron microscopy (SEM) demonstrated that HTTCP/APP system benefited to the formation of more intumescent, dense, compact char layer on the materials surface which could effectively prevent the underlying material from degradation during burning. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44660.  相似文献   

18.
A new intumescent flame retardant (IFR) system consisting of ammonium polyphosphate (APP) and charing‐foaming agent (CFA) and a little organic montmorillonite (OMMT) was used in low‐density polyethylene (LLDPE)/ethylene‐vinyl acetate (EVA) composite. According to limiting oxygen index (LOI) value and UL‐94 rating obtained from this work, the reasonable mass ratio of APP to CFA was 3 : 1, and OMMT could obviously enhance the flame retardancy of the composites. Cone calorimeter (CONE) and thermogravimetric analysis (TGA) were applied to evaluate the burning behavior and thermal stability of IFR‐LLDPE/EVA (LLDPE/EVA) composites. The results of cone calorimeter showed that heat release rate peak (HRR‐peak) and smoke production rate peak (SPR‐peak) and time to ignition (TTI) of IFR‐LLDPE/EVA composites decreased clearly compared with the pure blend. TGA data showed that IFR could enhance the thermal stability of the composites at high temperature and effectively increase the char residue. The morphological structures of the composites observed by scanning electron microscopy (SEM) and X‐ray diffraction (XRD) demonstrated that OMMT could well disperse in the composites without exfoliation, and obviously improve the compatibility of components of IFR in LLDPE/EVA blend. The morphological structures of char layer obtained from Cone indicated that OMMT make the char layer structure be more homogenous and more stable. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

19.
The effect of organopalygorskite (OPGS) on an intumescent flame retardant (IFR) low‐density polypropylene (PP) has been investigated using the limited oxygen index (LOI), vertical burning test (UL‐94) and thermogravimetric analysis (TGA). The results of the LOI and UL‐94 tests indicate that the addition of OPGS substantially increases the LOI value for PP/IFR at a OPGS to IRF mass ratio of 2/28 with 30 wt% of total flame retardant. In addition, the samples pass the V‐0 rating in the UL‐94 tests. The results indicate that the addition of 2.0 wt% of OPGS simultaneously increases the tensile strength and bending strength of PP/IFR. J. VINYL ADDIT. TECHNOL., 24:281–287, 2018. © 2016 Society of Plastics Engineers  相似文献   

20.
A novel flame retardant, tetra(5,5‐dimethyl‐1,3‐ dioxaphosphorinanyl‐2‐oxy) neopentane (DOPNP), was synthesized successfully, and its structure was characterized by FT‐IR, 1H NMR, and 31P NMR. The thermogravimetric analysis (TGA) results demonstrate that DOPNP showed a good char‐forming ability. Its initial decomposition temperature was 236.4°C based on 1% mass loss, and its char residue was 41.2 wt % at 600°C, and 22.9 wt % at 800°C, respectively. The flame retardancy and thermal degradation behavior of novel intumescent flame‐retardant polypropylene (IFR‐PP) composites containing DOPNP were investigated using limiting oxygen index (LOI), UL‐94 test, TGA, cone calorimeter (CONE) test, and scanning electron microscopy (SEM). The results demonstrate that DOPNP effectively raised LOI value of IFR‐PP. When the loading of IFR was 30 wt %, LOI of IFR‐PP reached 31.3%, and it passed UL‐94 V‐0. TGA results show that DOPNP made the thermal decomposition of IFR‐PP take place in advance; reduced the thermal decomposition rate and raised the residual char amount. CONE results show that DOPNP could effectively decrease the heat release rate peak of IFR‐PP. A continuous and compact char layer observed from the SEM further proved the flame retardance. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号