首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
Hollow‐fiber ultrafiltration (UF) membranes were prepared from blends of poly(vinyl chloride) (PVC) and polystyrene (PS) with a dry/wet phase inversion method. Poly(ethylene glycol) (PEG) and N,N‐dimethylacetamide were used as the additive and solvent, respectively. The effects of the PEG concentration in the dope solution as an additive on the cross sections and inner and outer surface morphologies, permeability, and separation performance of the hollow fibers were examined. The mean pore size, pore size distribution, and mean roughness of both the inner and outer surfaces of the produced hollow fibers were determined by atomic force microscopy. Also, the mechanical properties of the hollow‐fiber membranes were investigated. UF experiments were conducted with aqueous solutions of poly(vinyl pyrrolidone) (PVP; K‐90, Mw = 360 kDa). From the results, we found that the PVC/PS hollow‐fiber membranes had two layers with a fingerlike structure. These two layers were changed from a wide and long to a thin and short morphology with increasing PEG concentration. A novel and until now undescribed shape of the nodules in the outer surfaces, which was denoted as a sea‐waves shape, was observed. The outer and inner pore sizes both increased with increasing PEG concentration. The water permeation flux of the hollow fibers increased from 104 to 367 L m?2 h?1 bar?1) at higher PEG concentrations. The PVP rejection reached the highest value at a PEG concentration of 4 wt %, whereas at higher values (from 4 to 9 wt %), the rejection decreased. The same trend was found also for the tensile stress at break, Young's modulus, and elongation at break of the hollow fibers. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 989‐1004, 2013  相似文献   

2.
Poly(vinyl chloride) (PVC) hollow‐fiber membranes were spun by a dry/wet phase‐inversion technique from dopes containing 15 wt % PVC to achieve membranes with different pore sizes for ultrafiltration (UF) applications. The effects of the N,N‐dimethylacetamide (DMAc) concentration in the internal coagulant on the structural morphology, separation performance, and mechanical properties of the produced PVC hollow fibers were investigated. The PVC membranes were characterized by scanning electron microscopy, average pore size, pore size distribution, void volume fraction measurements, and solubility parameter difference. Moreover, the UF experiments were conducted with pure water and aqueous solutions of poly(vinyl pyrrolidone) as feeds. The mechanical properties of the PVC hollow‐fiber membranes were discussed in terms of the tensile strength and Young's modulus. It was found that the PVC membrane morphology changed from thin, fingerlike macrovoids at the inner edge to fully spongelike structure with DMAc concentration in the internal coagulant. The effective pores showed a wide distribution, between 0.2 and 1.1 μm, for the membranes prepared with H2O as the internal coagulant and a narrow distribution, between 0.114 and 0.135 μm, with 50 wt % DMAc. The results illustrate that the difference in the membrane performances was dependent on the DMAc concentration. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

3.
Ultrafiltration (UF) membranes were prepared from poly(vinyl chloride) (PVC), carboxylated poly(vinyl chloride) (CPVC), and PVC/CPVC blends by the phase-inversion method. The physical structure of the membranes was characterized by Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM). The fouling characteristics of all the three membranes and acrylamide (AA)-grafted PVC membranes were characterized by ultrafiltration of bovine serum albumin (BSA) solution over a range of pH and of salt concentrations. Maximum adsorption of the protein on the membrane occurred near the isoelectric point of BSA and in the presence of the salts. The charge on BSA appears to be a dominant factor in determining the fouling. The UF results are explained in terms of nature of the membrane polymer, and effect of different ionic environments on the conformational changes of the protein. The ultrafiltration fluxes are correlated by a model based on the membrane resistance and the time-dependent resistance of the concentration polarization layer of the protein. The values of a mass transfer coefficient and concentration polarization were determined. Zeta potential of the membranes were also determined before and after the UF. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 1117–1130, 1999  相似文献   

4.
Cellulose acetate (CA) is widely used in membrane processes. In this study, CA (weight‐average molecular weight = 52,000) was mixed with poly(vinyl pyrrolidone) (PVP; weight‐average molecular weight = 15,000) as an additive in 1‐methyl‐2‐pyrrolidone as a solvent. The phase‐inversion method was used for the preparation of flat‐sheet membranes. The effects of PVP concentration and coagulation bath temperature (CBT) on the morphology, pure water permeation flux, and thermal stability of the prepared membranes were studied and are discussed in this article. The solute rejection of the developed CA membranes was quantified with an insulin protein solution. The results showed that an increase in the CBT levels from 0 to 23°C along with an increase in the PVP concentration in the cast film from 0 to 1.5 wt % resulted in an increase in the macrovoid formation in the membrane sublayer, an increase in the pure water flux (PWF), and a decrease in insulin rejection. Further increases in the PVP concentration from 1.5 to 3, 6, and 9 wt % resulted in gradual suppression of the macrovoid formation, a decrease in PWF, and an increase in insulin rejection. Higher PVP concentrations and lower CBT levels also appeared to result in higher glass‐transition temperatures. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

5.
The miscibility behaviour of blends of poly(N-vinyl pyrrolidone) (PVP) with poly(vinyl chloride) (PVC), poly(vinyl acetate) (PVAc) and vinyl chloride–vinyl acetate (VCVAc) copolymer has been investigated on the basis of a viscometric approach. PVP is found to be miscible with PVC over the entire composition range, as is evident from the high values observed for the intrinsic viscosity of transfer. This is further supported by the single glass transition temperature observed in differential scanning calorimetry studies of the blend films. Blends of PVP with VCVAc copolymer exhibit microphase separation which is shown clearly in the scanning electron micrographs of the films. PVAc/PVP blends show interaction only at low PVAc contents, but in general are immiscible. © of SCI.  相似文献   

6.
Poly(vinyl chloride) membranes were prepared via a phase inversion method, using N,N‐dimethylacetamide (DMAc) as solvent, polyethylene glycol (PEG), polyvinylpyrrolidone (PVP), and sucrose as three typical additives and water as the coagulation medium. The phase diagrams of the PVC/DMAc/additives/water quaternary systems were constructed using cloud‐point experimental data. With the addition of the different additives, the effect of dope solution temperature on the dope solution viscosity and the structure of membranes were investigated. It indicates that the viscosity of the PVC/DMAc dope solution with the additive increase compared with the dope solution without any additive and the addition of the additives into the dope solution alter the morphology and structure of the resultant membranes during the phase‐inversion process. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

7.
The structure and performance of modified poly(vinylidene fluoride‐co‐hexafluoropropylene) (PVdF‐co‐HFP) ultra‐filtration membranes prepared from casting solutions with different concentrations of poly(vinyl pyrrolidone) (PVP) were investigated in this study. Membrane properties were studied in terms of membrane compaction, pure water flux (PWF), water content (WC), membrane hydraulic resistance ( R m), protein rejection, molecular weight cut‐off (MWCO), average pore size, and porosity. PWF, WC, and thermal stability of the blend membranes increased whereas the crystalline nature and mechanical strength of the blend membranes decreased when PVP additive concentration was increased. The contact angle (CA) decreased as the PVP concentration increased in the casting solution, which indicates that the hydro‐philicity of the surface increased upon addition of PVP. The average pore size and porosity of the PVdF‐co‐HFP membrane increased to 42.82 Å and 25.12%, respectively, when 7.5 wt% PVP was blended in the casting solution. The MWCO increased from 20 to 45 kDa with an increase in PVP concentration from 0 to 7.5 wt%. The protein separation study revealed that the rejection increased as the protein molecular weight increased. The PVdF‐co‐HFP/PVP blended membrane prepared from a 7.5 wt% PVP solution had a maximum flux recovery ratio of 74.3%, which explains its better antifouling properties as compared to the neat PVdF‐co‐HFP membrane. POLYM. ENG. SCI., 55:2482–2492, 2015. © 2015 Society of Plastics Engineers  相似文献   

8.
Nanofiltration membranes based on poly(vinyl alcohol) (PVA) and ionic polymers, such as sodium alginate (SA) and chitosan, were prepared by casting the respective polymer solutions. The membranes prepared from PVA or PVA–ionic polymer blend were crosslinked in a isopropanol solution using glutaraldehyde as a crosslinking agent. The membranes were characterized with Fourier transform infrared spectroscopy and X‐ray diffractometry and swelling test. The membranes crosslinked through the acetal linkage formation between the  OH groups of PVA and the ionomer and glutaraldehyde appeared to be semicrystalline. To study the permeation properties, the membranes were tested with various feed solutions [sodium sulfate, sodium chloride, poly(ethylene glycol) with 600 g/mol of molecular weight (PEG 600), and isopropyl alcohol]. For example, the permeance and the solute rejection of the 1000 ppm sodium sulfate at 600 psi of upstream pressure through the PVA membrane were 0.55 m3/m2 day and over 99%, respectively. The effects of the ionomers on the permeation properties of the PVA membranes were studied using the PVA–SA and PVA–chitosan blend membranes. The addition of small amount of ionic polymers (5 wt %) made the PVA membranes more effective for the organic solute rejection without decrease in their fluxes. The rejection ratios of the PEG 600 and isopropanol were increased substantially. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 1755–1762, 1999  相似文献   

9.
Fibrous membranes of cellulose acetate (CA), poly(vinyl pyrrolidone) (PVP) and composite membranes of these polymers, were obtained by the electrospinning method. Using systematic method, the optimal conditions for preparation of fibrous membranes were found. Both CA and PVP a concentration of 8% weight was found. The CA was dissolved in a acetone:water solution, volume ratio 80 : 20 and the PVP is dissolved in ethanol:water solution, ratio volume 85 : 15. The flow rate for both polymers was 1.5 mL h?1. The same applied voltage value and the distance between the needle and collection plate were for polymer both, 15 kV and 15 cm respectively. The morphology of fibrous membranes and composite membranes were evaluated by scanning electron microscopy (SEM). The CA fibers showed ribon morphology, while the PVP fibers were cilindric, in both cases with diameters in the micrometer range. Thermogravimetric analysis showed that CA had a complete degradation to 445°C, while the fibrous membranes PVP required a value of temperature for degradation of up to 571°C. Fibrous composite membrane PVP/CA/PVP shows a higher value of strain at break (%), and a lower value of tensile strength (MPa) compared to CA/PVP/CA. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

10.
Ultrafiltration (UF) membranes based on poly(vinyl chloride) and poly(vinyl pyrrolidone) blends were prepared by the phase inversion method, and the factors governing membrane properties were investigated. The membranes were characterized by scanning electron microscopy and atomic force microscopy. The fouling characteristics of the membranes were determined by UF of aqueous solutions of bovine serum albumin (BSA) over a pH range of 2–9 and varying salt concentrations. The maximum adsorption of the protein on the membrane surface occurred near the isoelectric point (pI 4.8) of BSA, and the presence of the salts increased the fouling of the membrane. The results can be explained in terms of the nature of the membrane polymer and the effect of different ionic environments on the permeability of the deposited protein layer. The net charge on the BSA molecules appears to be a dominant factor in determining the flux of water through the blend membranes. The UF flux is correlated by a model based on the membrane resistance, adsorbed protein resistance, and time dependent resistance of the concentration polarization layer near the membrane surface. The ζ potentials of the membranes were also determined before and after UF to characterize the surface potential of the membrane. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 2606–2620, 2000  相似文献   

11.
Chlorinated poly(vinyl chloride) (CPVC) membranes for microfiltration processes were prepared with the combined process of a solvent evaporation technique and the water‐vapor induced‐phase‐inversion method. CPVC membranes with a mean pore size of 0.7 μm were very hydrophobic. These membranes were subjected to surface modification by ultraviolet (UV)‐assisted graft polymerization with N‐vinyl‐2‐pyrrolidinone (NVP) to increase their surface wettability and decrease their adsorptive fouling. The grafting yields of the modified membranes were controlled by alteration of UV irradiation time and NVP monomer concentration. The changes in chemical structure between the CPVC membrane and the CPVC‐g‐poly(N‐vinyl‐2‐pyrrolidinone) membrane and the variation of the topologies of the modified PVC membranes were characterized by Fourier transform infrared spectroscopy, gel permeation chromatography, and field emission scanning electron microscopy. According to the results, the graft yield of the modified CPVC membrane reached a maximum at 5 min of UV exposure time and 20 vol % NVP concentration. The filtration behavior of these membranes was investigated with deionized water by a crossflow filtration measurement. The surface hydrophilicity and roughness were easily changed by the grafting of NVP on the surface of the CPVC membrane through a simultaneous irradiation grafting method by UV irradiation. To confirm the effect of grafting for filtration, we compared the unmodified and modified CPVC membranes with respect to their deionized water permeation by using crossflow filtration methods. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 3188–3195, 2003  相似文献   

12.
Ternary blends composed of matrix polymer poly(vinylidene fluoride) (PVDF) with different proportions of poly(methyl methacrylate) (PMMA)/poly(vinyl pyrrolidone) (PVP) blends were prepared by solution casting. The crystallization behavior and hydrophilicity of ternary blends were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), wide angle X‐ray diffraction (WAXD), differential scanning calorimetry (DSC), and contact angle test. According to morphological analysis, the surface was full of typical spherulitic structure of PVDF and the average diameter was in the order of 3 μm. The samples presented predominantly β phase of PVDF by solution casting. It indicated that the size of surface spherulites and crystalline phase had little change with the PMMA or PVP addition. Moreover, FTIR demonstrated special interactions among the ternary polymers, which led to the shift of the carbonyl stretching absorption band of PVP. On the other hand, the melting, crystallization temperature, and crystallinity of the blends had a little change compared with the neat PVDF in the first heating process. Except for the content of PVP containing 30 wt %, the crystallinity of PVDF decreased remarkably from 64% to 33% and the value of t1/2 was not obtained. Besides, the hydrophilicity of PVDF was remarkably improved by blending with PMMA/PVP, especially when the content of PVP reached 30 wt %, the water contact angle displayed the lowest value which decreased from 98.8° to 51.0°. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

13.
This study examined the consequences of the addition of polyvinyl pyrrolidone (PVP) of different molecular weights with constant molecular weight of polyacrylic acid (PAA) on the morphology and permeation properties of polysulfone (PSF) membranes. The asymmetric polymeric membranes were prepared by phase inversion process using PSF in N‐methyl‐2‐pyrrolidone (NMP) as a solvent. The surface structure and morphology of the prepared membranes were analyzed by field‐emission scanning electron microscope (FESEM) and atomic force microscopy (AFM). The pore number, average pore size and area of pores for all the membranes were determined by permeability method. These ultrafiltration membranes were subjected to characterizations such as measurement of pure water flux (PWF), compaction factor (CF), bovine serum albumin (BSA) rejection for finding the permeability performance, whereas equilibrium water content, contact angle, porosity, hydraulic resistance, and ion exchange capacity (IEC) are measured for evaluating the hydrophilicity. Results demonstrate that the flux performance of the membranes and morphological parameters own a crucial inter‐relationship with the molecular weight of PVP. The membrane pore area and pore number were found to be increased by increasing molecular weight of PVP with constant molecular weight of PAA. A detailed comparative study was done with Chakrabarty et al. (J. Membr. Sci. 2008, 309, 209) and found better in almost all the aspects. All the resulting parameters were compared and concluded with the fact that addition of small amount of PAA in PSF/PVP/NMP casting solution can be better than addition of PVP alone. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41964.  相似文献   

14.
Blends of poly(vinyl alcohol) (PVA), poly(acrylic acid), (PAA), and poly(vinyl pyrrolidone) (PVP), with poly(N‐isopropylacrylamide) (PNIPAM), were prepared by casting from aqueous solutions. Mechanical properties of PNIPAM/PVA blends were analyzed by stress–strain tests. Differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) were employed to analyze the miscibility between the polymeric pairs. The results revealed that PNIPAM is not miscible with PVA and PVP in the whole range of composition. On the other hand, PNIPAM interacts strongly with PAA forming interpolymer complex due to the formation of cooperative hydrogen bonds. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 743–748, 2004  相似文献   

15.
Structural insights into a novel, molecular‐composite poly(vinyl pyrrolidone) consisting of a soluble, film‐forming poly(vinyl pyrrolidone) (PVP) polymer and in situ formed, minute, crosslinked, nanoscale, insoluble poly [poly(vinyl pyrrolidone)] (PPVP) polymer particles are reported. A technique for determining the PVP molecular weight and PPVP weight fraction by gel permeation chromatography/multi‐angle light scattering (MALS) is described. Particle size studies by quasi‐elastic light scattering and field flow fractionation/MALS demonstrate that the nanoscale, insoluble polymer particles are nominally 370 and 325 nm in diameter, respectively. Rheological experiments on this dispersed system yield a complex macroscopic behavior. Atomic force microscopy images confirm a substantial heterogeneous nature for a film cast from this molecular‐composite material. Finally, this polymeric molecular composite in film form exhibits, among many other interesting properties, a dramatic enhancement in water resistance, as demonstrated by a simple image water resistance test for an ink‐jet printing application. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 734–741, 2003  相似文献   

16.
Clear blends of chitosan with poly(N‐vinyl‐2‐pyrrolidone) (PVP) made from aqueous solutions appear to be miscible from visual appearance. Infrared (IR) spectra used to investigate the carbonyl—hydroxyl hydrogen bonding in the blends indicated compatibility of two polymers on a molecular level. The IR spectra were also used to determine the interaction change accessing with increasing temperature and indicated that a significant conformational change occurred. On the other hand, the blend membranes were evaluated for separation of methanol from methyl tert‐butyl ether. The influences of the membrane and the feed compositions were investigated. Methanol preferentially permeates through all the tested membranes, and the partial flux of methanol significantly increase with the poly(N‐vinyl‐2‐pyrrolidone) content increasing. The temperature dependence of pervaporation performance indicated that a significant conformational change occurred with increasing temperature. Combined with the IR results, the pervaporation properties are in agreement with characteristics of interaction between chain–chain within the blend membranes. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 1452–1458, 1999  相似文献   

17.
Ternary blends composed of matrix polymer poly(vinylidene fluoride) (PVDF) with different proportions of poly(methyl methacrylate) (PMMA)/poly(vinyl pyrrolidone) (PVP) blends were prepared by melt mixing. The miscibility, crystallization behavior, mechanical properties and hydrophilicity of the ternary blends have been investigated. The high compatibility of PVDF/PMMA/PVP ternary blends is induced by strong interactions between the carbonyl groups of the PMMA/PVP blend and the CF2 or CH2 group of PVDF. According to the Fourier transform infrared and wide‐angle X‐ray difffraction analyses, the introduction of PMMA does not change the crystalline state (i.e. α phase) of PVDF. By contrast, the addition of PVP in the blends favors the transformation of the crystalline state of PVDF from non‐polar α to polar β phase. Moreover, the crystallinity of the PVDF/PMMA/PVP ternary blends also decreases compared with neat PVDF. Through mechanical analysis, the elongation at break of the blends significantly increases to more than six times that of neat PVDF. This confirms that the addition of the PMMA/PVP blend enhances the toughness of PVDF. Besides, the hydrophilicity of PVDF is remarkably improved by blending with PMMA/PVP; in particular when the content of PVP reaches 30 wt%, the water contact angle displays its lowest value which decreased from 91.4° to 51.0°. Copyright © 2011 Society of Chemical Industry  相似文献   

18.
Poly(vinyl alcohol) (PVA) blended with poly(ethylene glycol) (PEG) was crosslinked with tetraethoxysilane (TEOS) to prepare organic–inorganic PVA/PEG/TEOS hybrid membranes. The membranes were then used for the dehydration of ethanol by pervaporation (PV). The physicochemical structure of the hybrid membranes was studied with Fourier transform infrared spectra (FT‐IR), wide‐angle X‐ray diffraction WXRD, and scanning electron microscopy (SEM). PVA and PEG were crosslinked with TEOS, and the crosslinking density increased with increases in the TEOS content, annealing temperature, and time. The water permselectivity of the hybrid membranes increased with increasing annealing temperature or time; however, the permeation fluxes decreased at the same time. SEM pictures showed that phase separation took place in the hybrid membranes when the TEOS content was greater than 15 wt %. The water permselectivity increased with the addition of TEOS and reached the maximum at 10 wt % TEOS. The water permselectivity decreased, whereas the permeation flux increased, with an increase in the feed water content or feed temperature. The hybrid membrane that was annealed at 130°C for 12 h exhibited high permselectivity with a separation factor of 300 and a permeation flux of 0.046 kg m?2 h?1 in PV of 15 wt % water in ethanol. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

19.
To improve the antifouling property of poly(vinyl chloride) (PVC) membranes, a series of poly(methacrylic acid) grafted PVC copolymers (PVC‐g‐PMAA) with different grafting degree were synthesized via one‐step atom transfer radical polymerization process utilizing the labile chlorines on PVC backbones followed by one‐step hydrolysis reaction. PVC/PVC‐g‐PMAA blend membranes with different grafting degree and copolymer content were prepared by nonsolvent induced phase separation method. The surface chemical composition, surface charge, membrane structures, wettability, permeability, separation performances and the fouling resistance of blend membranes were carefully investigated. The results indicated that the PMAA chains were segregated towards the surface and the membranes were endowed with negative charge. The hydrophilicity and permeability of the blend membranes were obviously improved. Furthermore, the antifouling ability especially at neutral or alkaline environments was also significantly increased. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42745.  相似文献   

20.
Asymmetric ultrafiltration (UF) membranes were prepared by the blending of poly(ether sulfone) (PES) and sulfonated poly(ether ether ketone) (SPEEK) polymers with N,N′‐dimethylformamide solvent by the phase‐inversion method. SPEEK was selected as the hydrophilic polymer in a blend with different composition of PES and SPEEK. The solution‐cast PES/SPEEK blend membranes were homogeneous for all of the studied compositions from 100/0 to 60/40 wt % in a total of 17.5 wt % polymer and 82.5 wt % solvent. The presence of SPEEK beyond 40 wt % in the casting solution did not form membranes. The prepared membranes were characterized for their UF performances, such as pure water flux, water content, porosity, and membrane hydraulic resistance, and morphology and melting temperature. We estimated that the pure water flux of the PES/SPEEK blend membranes increased from 17.3 to 85.6 L m?2 h?1 when the concentration of SPEEK increased from 0 to 40 wt % in the casting solution. The membranes were also characterized their separation performance with proteins and metal‐ion solutions. The results indicate significant improvement in the performance characteristics of the blend membranes with the addition of SPEEK. In particular, the rejection of proteins and metal ions was marginally decreased, whereas the permeate flux was radically improved. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号