首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Composite membranes of poly(vinylidene‐trifluoroethylene)/titanium dioxide (PVDF‐TrFE/TiO2) were prepared by the solution cast method. The crystallization behavior and dielectric properties of the composites with TiO2 calcined at different temperatures were studied. Transmission electron microscopy and X‐ray diffraction (XRD) results showed that the TiO2 nanoparticles calcined at different temperatures were well dispersed in the polymer matrix and did not affect the structure of the PVDF‐TrFE matrix. XRD and differential scanning calorimeter measurements showed that the crystallinity of PVDF‐TrFE/TiO2 composites increased as the addition of TiO2 with different calcination temperatures. The dielectric property testing showed that the permittivity of PVDF‐TrFE/TiO2 membrane increased rapidly with the increase of TiO2 content and the calcination temperature of TiO2 at constant TiO2 content, but the dielectric loss did not change much. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

2.
The goal of this project is to obtain poly(vinyl alcohol) (PVA)/TiO2‐bovine serum albumin (BSA) nanocomposite (NC) films in different weight percentages of modified TiO2. For this purpose, to prevent the accumulation of nanoparticles (NPs) in the PVA matrix, the surface of the TiO2 NPs was treated with the BSA molecules. To achieve this aim, ultrasonic waves were used as an environmentally friendly and green process that decrease the time of reactions, help better spreading of TiO2 NPs and maintain dimensions of TiO2 NPs in the nanoscale range. In the end, the features of the PVA/TiO2‐BSA NC films were considered with a variety of techniques. The Fourier transform infrared spectroscopy, energy dispersive X‐ray, and X‐ray diffraction showed that the BSA was well placed on the surface of TiO2 NPs. The thermal gravimetric analysis and UV‐visible results demonstrated that all the PVA/TiO2‐BSA NC films have better thermal and optical properties than the pure PVA. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46558.  相似文献   

3.
The self‐healing of a crack in a glass–boron composite has been observed by X‐ray nanotomography. It shows the occurrence of a healing effect within the bulk of the composite, despite of a limited oxygen access in the crack. This 3D tomographic observation offers new insights in the mechanism of healing, complementary to in situ high‐temperature environmental scanning electron microscopy. In addition, nano‐X‐ray fluorescence imaging, electron microprobe and solid‐state NMR gave evidence that the molten B2O3, produced by the oxidation of boron particles at 700°C, reacts with the glass matrix to form borosilicate compounds that also contribute to heal the crack. The high viscosity of B2O3 at 700°C leads to the formation of bridges between the walls of the crack, which limit oxygen diffusion. Thus, the B particle oxidation is not completed after a single healing cycle, meaning that several healing cycles can be obtained in a composite.  相似文献   

4.
Different proportions of nanoscale TiO2 (nano‐TiO2)‐filled polybutylene succinate (PBS) composites were prepared by vane extruder. The crystalline, thermal, dynamic viscoelastic, mechanical, and UV‐resistance properties of the composites were studied, and X‐ray diffraction, differential scanning calorimetry, and thermogravimetric analysis were conducted. Results show that the crystalline structure of the PBS composites did not change with TiO2 addition. TiO2 almost has no effect on the crystallization and melting behavior of PBS. Nevertheless, the introduction of TiO2 has improved the thermal stability, tensile modulus, flexural modulus, and flexural strength of the PBS composites. The UV resistance of the composites has also been significantly enhanced with TiO2 addition. POLYM. COMPOS., 35:53–59, 2014. © 2013 Society of Plastics Engineers  相似文献   

5.
The aim of this work was to obtain anatase nano‐TiO2 by the sol–gel method at room temperature and to achieve self‐cleaning Bombyx mori silk fabrics. Nano‐TiO2 sols based on an aqueous system and an ethanol system were prepared separately by the sol–gel method using tetrabutyl orthotitanate as a precursor at room temperature. Particle size analyses showed that nano‐TiO2 particles in an aqueous system were much bigger and more variant than those in ethanol. X‐ray diffraction patterns revealed a pure anatase phase of nano‐TiO2 in an aqueous system. Crystalline transformation of TiO2 from anatase to rutile by photoradiation at ambient temperature was also proved. Thermogravimetric and differential scanning calorimetric analyses confirmed the phase transformation of nano‐TiO2. A scanning electron microscope equipped with an energy‐dispersive spectrometer was used to investigate the surface morphology and elements of Bombyx mori silk fabrics. The contact angles with water, the kinetics of photocatalytic degradation of Methylene Blue, and decontamination of red‐wine‐stained fabrics under ultraviolet radiation demonstrated that the fabrics had good self‐cleaning properties and photoinduced hydrophilicity.  相似文献   

6.
The immobilization of photocatalysts on several kinds of substrates has been widely studied over the past few years, focusing mainly on improving its industrial application. In this work, novel hybrid films were prepared, employing TiO2 P25, commercial ZnO or BiOI, synthetized through hydrothermal method and immobilized on poly(vinylidene fluoride) by the non‐solvent‐induced phase inversion technique. Subsequently, the prepared composites were evaluated by photodegradation of methylene blue (MB) under ultraviolet or visible light. The samples were also characterized by scanning electron microscope, thermo‐gravimetric analysis, attenuated total reflection–Fourier transform infrared spectroscopy, and X‐ray diffractometer analysis to improve comprehension of the composites' photocatalytic behavior. The degradation reaction of the contaminants exhibited pseudo‐first order kinetics in all samples, and achieved better performance when compared to simple photolysis. The recyclability of the hybrid films was also evaluated and proved that polymeric matrix is a promising material for the preparation of composites for photocatalysis applications. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46367.  相似文献   

7.
As novel piezoelectric materials, carbon‐reinforced polymer composites exhibit excellent piezoelectric properties and flexibility. In this study, we used a styrene–butadiene–styrene triblock copolymer covalently grafted with graphene (SBS‐g‐RGO) to prepare SBS‐g‐RGO/styrene–butadiene–styrene (SBS) composites to enhance the organic solubility of graphene sheets and its dispersion in composites. Once exfoliated from natural graphite, graphene oxide was chemically modified with 1,6‐hexanediamine to functionalize with amino groups (GO–NH2), and this was followed by reduction with hydrazine [amine‐functionalized graphene oxide (RGO–NH2)]. SBS‐g‐RGO was finally obtained by the reaction of RGO–NH2 and maleic anhydride grafted SBS. After that, X‐ray diffraction, X‐ray photoelectron spectroscopy, Raman spectroscopy, scanning electron microscopy, transmission electron microscopy, thermogravimetric analysis, and other methods were applied to characterize SBS‐g‐RGO. The results indicate that the SBS molecules were grafted onto the graphene sheets by covalent bonds, and SBS‐g‐RGO was dispersed well. In addition, the mechanical and electrical conductivity properties of the SBS‐g‐RGO/SBS composites showed significant improvements because of the excellent interfacial interactions and homogeneous dispersion of SBS‐g‐RGO in SBS. Moreover, the composites exhibited remarkable piezo resistivity under vertical compression and great repeatability after 10 compression cycles; thus, the composites have the potential to be applied in sensor production. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46568.  相似文献   

8.
Novel, flexible, lead‐free X‐ray‐shielding composites were prepared with a high‐functional methyl vinyl silicone rubber (VMQ) matrix with W and Bi2O3 as filler materials. To verify the advanced properties of the lead‐free material, composites with the same mass fraction of PbO were compared. With the X‐ray energy ranging from 48 to 185 keV, the W/Bi2O3/VMQ composites exhibited higher X‐ray‐shielding properties. As the filler volume fraction decreased, the tensile strength, elongation, tear strength, and flexibility of the W/Bi2O3/VMQ composites increased. The Shore hardness of the W/Bi2O3/VMQ composites had a maximum value of 46.6 HA and was still very flexible. With decreasing filler volume fraction, the water‐vapor transmission performances of the W/Bi2O3/VMQ composites increased, and the W/Bi2O3/VMQ composites also showed better water‐vapor permeability. The heat‐transfer properties of the W/Bi2O3/VMQ composites increased with increasing W content, and when the W content exceeded 70 wt %, the thermal conductivity of the W/Bi2O3/VMQ material was about 70.45% higher than that of the PbO/VMQ composite. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43012.  相似文献   

9.
In this study, bamboo fiber/high‐density polyethylene (HDPE) composites were prepared, and the effects of nano‐TiO2 on their thermal properties and crystallization behavior were investigated via thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC), X‐ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). The results show that the addition of nano‐TiO2 improved the thermal stability and had a dual function in the crystallization behavior of the composites. On one hand, it functioned as a nucleating agent. The addition of 2 wt % nano‐TiO2 promoted the crystallization, which caused the increase of the crystallization rate and crystallinity degree, as well as the micronization of the crystalline grain. On the other hand, intermolecular hydrogen bonds and covalent bonds were formed between nano‐TiO2 and the polymer matrix, which hindered the crystallization of the composites. When the content of nano‐TiO2 was continually increased, the inhibitory effect of the crystallization was gradually enhanced, which resulted in a decrease in the crystallization rate and crystallinity degree of the composites. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39846.  相似文献   

10.
Nanocomposites based on neodymium‐doped titanium dioxide (Nd‐TiO2)/poly(n‐butyl methacrylate) (PBMA) have been prepared by an in situ polymerization of butyl methacrylate monomer with varying concentrations of Nd‐TiO2 nanoparticles. The resulting nanocomposites have been analyzed by ultraviolet (UV)–Visible spectroscopy, Fourier‐transform infrared spectroscopy (FTIR), X‐ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscope (SEM), differential scanning calorimetry (DSC), thermogravimetric analysis, and impedance analyzer (TGA). The results of UV and FTIR spectroscopy have indicated the interaction of nanoparticles with the PBMA matrix. Spherically shaped nanoparticles with an average size of 10–25 nm have been revealed in the TEM and their homogeneous dispersion, and interaction of polymer matrix has been confirmed by SEM and XRD studies. The thermal stability and glass transition temperature of the composites were significantly enhanced by the addition of nanoparticles. The AC conductivity and dielectric properties of nanocomposites have been found to be higher than pure PBMA, and the maximum electrical properties have been observed for 7 wt% composite. The reinforcing nature of the nanoparticles in PBMA has been reflected in the improvement in tensile strength measurements. The result indicated that the tensile strength of nanocomposites have greatly enhanced by the addition of Nd‐TiO2 nanoparticles whereas the elongation at break decreases with the loading of nanofillers. To understand the mechanism of reinforcement, tensile strength values have been correlated with various theoretical modeling. The research has been found to be promising in the development of novel materials with enhanced tensile strength, dielectric constant, and thermal properties, which may find potential applications in energy storage and nanoelectronic devices. J. VINYL ADDIT. TECHNOL., 25:9–18, 2019. © 2018 Society of Plastics Engineers  相似文献   

11.
Highly monodisperse CeO2@poly(methyl silsesquioxane) (PMSQ) microspheres were successfully prepared by a facile chemical precipitation technique. The structures and properties of CeO2@PMSQ were analyzed by Fourier transform infrared spectroscopy, X‐ray diffraction, and scanning electron microscopy techniques. We confirmed that the PMSQ microspheres were uniformly coated by CeO2 nanoparticles, with about an 8 nm crystallite diameter. Then, CeO2@PMSQ was incorporated into a poly(vinyl alcohol) (PVA) matrix to fabricate PVA/CeO2@PMSQ composite films by the casting of homogeneous solutions. The thermal and optical properties of the composite films were investigated by thermogravimetric analysis and UV–visible spectroscopy. The results show the high UV‐shielding efficiency of the composites: for a film containing 2.5 wt % CeO2@PMSQ microspheres, about 80% UV light at wavelengths between 200 and 360 nm was absorbed, whereas the optical transparency in the visible region still remained very high. The addition of CeO2@PMSQ microspheres improved the thermal stability of the PVA films. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45065.  相似文献   

12.
Poly(dodecafluoroheptyl methacrylate) (PDFMA)/titanium dioxide (TiO2) nanocomposites with high TiO2 content were successfully prepared by emulsion polymerization process. Before polymerization, nano‐TiO2 was pretreated by silane coupling agent. Surface groups and composition of the modified nano‐TiO2 were characterized by Fourier transform infrared and X‐ray photoelectron spectra. The microstructure of nanocomposites was observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). In addition, the thermo‐stability and wetting behavior were also investigated in relation to the dosage of TiO2. The results showed that the thermostability is improved with the increment of TiO2 content while hydrophilic properties exhibit nonlinear variation with the content of TiO2. The optimal percentage of TiO2 content in the TiO2/PDFMA nanocomposites is 30% that could lead to the higher thermostability and hydrophobicity properties of composites. The maximum water contact angle (WCA) of nanocomposites can reach 120° ± 1°. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44377.  相似文献   

13.
Polystyrene (PS) microencapsulated paraffin wax (MePW) and PS–SiO2 MePW were used to improve the form‐stability of PW in hydroxyl‐terminated polybutadiene‐derived polyurethane (HTPB) binder. HTPB matrix containing different contents of PS MePW, PS–SiO2 MePW, and PW were prepared. The chemical composition, crystallinity, microstructure, heat capacities, thermal stabilities, thermal reliabilities, leakage, and mechanical properties of the composites were compared using Fourier transforms infrared spectroscope, X‐ray diffractometer, scanning electronic microscope, differential scanning calorimeter, thermo‐gravimetric analyzer, thermal cycling test, leaking test, compression, and tensile tests, respectively. The results showed that the MePW/PW/HTPB composites were prepared without chemical reaction. The thermal stability and mechanical properties of PS–SiO2 MePW/PW/HTPB increased more dramatically than that of PS MePW/PW/HTPB. With the increasing contents of MePWs, the PW leakage of the composites decreased, especially for PS MePW/PW/HTPB. Consequently, the MePW/PW/HTPB composites possess a potential application for PW‐based polymer‐bonded explosive system. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46222.  相似文献   

14.
Gd2O3/PEEK (poly ether ether ketone) composites were prepared on a twin‐screw extruder by the incorporation of Gd2O3 as a shield against X‐ray to PEEK matrix. The influence of Gd2O3 addition and surface treatment of the particles with sulfonated PEEK (SPEEK) on the morphology, thermal and mechanical properties of the composites was investigated by SEM, DSC, TGA and tensile tests respectively. DSC results showed that both the crystallization temperature (Tc) and melting temperature (Tm) of the composites decreased compared with pure PEEK at random filler content, which suggested that Gd2O3 hindered the process of PEEK nucleation. The tensile modulus of the composites increased with addition of Gd2O3 and the strain to break decreased. But the tensile modulus and strength of modified series were always higher than that of unmodified ones at the same filler content. The X‐ray shielding properties of composites apparently improved with the increment of the Gd2O3. The X‐ray transmittance (A) of 45% S4GPEEK reduced greatly by about three to eight times compared with PEEKs in all energy range measured. POLYM. COMPOS., 36:651–659, 2015. © 2014 Society of Plastics Engineers  相似文献   

15.
Palladium (Pd) nanoparticles with different sizes are in situ synthesized by reduction of PdCl2 with NaBH4 as reductant in the presence of poly(methacrylic acid) (PMAA)microspheres. The obtained PMAA/Pd composites are characterized by Fourier transform infrared spectra, X‐ray diffraction, and Transmission electron microscopy. The catalytic activity of the PMAA/Pd composites is investigated using a model reaction, that is, reduction of p‐nitrophenol to p‐aminophenol. The reaction shows first‐order kinetics, and the reaction rate increases with increasing reaction temperature, p‐nitrophenol concentration, and loadings of Pd nanoparticles on PMAA microspheres. The PMAA/Pd composites exhibit good stability, ascribing to the Pd nanoparticles stabilized by PMAA microspheres. POLYM. COMPOS., 35:2251–2260, 2014. © 2014 Society of Plastics Engineers  相似文献   

16.
This study provided a facile method to prepare nano‐TiO2/polystyrene hybride microspheres in ethanol solution. The formation of titanium dioxide (TiO2) nanoparticles and hybrid microspheres were verified by FTIR, SEM, transmission electron microscopy, thermogravimetric analysis, and X‐ray powder diffraction. Monodispersed colloid TiO2 nanoparticles with small particle sizes were obtained, and the average particle size could be effectively controlled from about 10 nm. The antibacterial activity of the organic microspheres and hybride microspheres was also investigated against Escherichia coli. They were able to efficiently inhibit the growth and the multiplication of E. coli under the UV. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

17.
A plasmonic composite, Ag@AgCl‐TiO2/OREC, was prepared by sol–gel combing calcination technique, precipitation, and photoreduction method. Then, Ag@AgCl‐TiO2/OREC/QCS composite microspheres were fabricated by an emulsification/chemical crosslinking method using quaternized chitosan and Ag@AgCl‐TiO2/OREC as scaffolds materials, potassium persulphate as initiator and N,N′‐methylenebisacrylamide as crosslinker. The resulting materials were characterized by Fourier transform infrared spectrometer (FTIR), X‐ray diffraction (XRD), UV‐visible diffused reflectance spectra (UV–vis DRS), and scanning electron microscopy (SEM). SEM showed that the Ag@AgCl‐TiO2/OREC/QCS composite microspheres had loose, rough surface, and spherical shape, with an average diameter of 15–45 μm. The Ag@AgCl‐TiO2/OREC/QCS composite microspheres present good adsorption–photocatalytic activities in the degradation of methylene orange (MO) and 92.1% MO was degraded after irradiation for 180 min. The high photocatalysis activity was attributed to the combined results of the relative high adsorption capacity, loose structure, and the surface plasmon resonance of silver nanoparticles formed on the surface of AgCl. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44601.  相似文献   

18.
Bi3+‐TiO2 photocatalysts were prepared by doping bismuth ion into the TiO2 structure in a sol‐gel process. The catalyst samples were then characterized by UV‐vis diffuse reflectance spectra (DRS), X‐ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT‐IR), X‐ray diffraction (XRD) and transmission electron microscopy (TEM). Rodamine‐B (RhB) was used in this study as a model chemical with the aim of organic pollutants control. The photocatalytic degradation of RhB demonstrated that an optimal loading of bismuth 0.7 at. % achieved the highest photodegradation rate, with the rate constant increasing by a factor of 3.89 over neat TiO2 (P25) under UV illumination (λ ≥ 320 nm). The degradation of p‐nitrobenzonic acid (pNBA) was also examined to prevent/preclude/exclude/ the photosensitization pathway. GC‐MS results show that pNBA can be effectively degraded and minerized to small molecules, such as quinone, acetic acid and formic acid.  相似文献   

19.
A novel poly(imide siloxane)/titania (PIS/TiO2) hybrid film was fabricated by sol‐gel process via in situ formation of TiO2 within PIS matrix. Poly(amic acid siloxane) (PAAS) was prepared from 4,4′‐oxydiphthalic anhydride, 2,2‐bis [4‐(4‐aminophenoxy) phenyl] propane, and α,ω‐bis(3‐aminopropyl)polydimethylsiloxane (APPS). Chelating agent, acetylacetone, and catalyst‐free polymerization were used to reduce the rate of hydrolysis of titanium alkoxide in the PAAS. X‐ray photoelectron spectroscopy data showed that the presence of APPS promotes the Ti surface composition of PIS/TiO2 hybrid film. The effects of TiO2 and APPS contents on the characteristics of surface, thermostability, coefficient of thermal expansion (CTE), and the strength of adhesion were investigated. The presence of TiO2 on the surface of the hybrid films enhanced the adhesive strength at the interface of PIS/TiO2 hybrid film and copper foil. When more TiO2 was incorporated into the PIS matrix, the PIS/TiO2 hybrid film exhibited lower CTE while retaining favorable mechanical and thermal properties. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

20.
Polyaniline nanocomposite films were chemically synthesized in the presence of alginate template by varying the concentration of TiO2 in the composites. Characterization of the composite samples by FTIR, UV‐Vis spectra (UV), and X‐ray diffraction (XRD) indicates the formation of polyaniline‐alginate/titanium dioxide (PAT) composites. The morphology analysis by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) also supports the formation of the composites. Temperature‐dependent DC conductivity of the polyaniline‐alginate (PA) and PAT composites was studied in the range of 300 ≤ T ≤ 500 K. UV‐Vis and FTIR spectral studies reveal that the alginate is a good template for the chemical interaction between polyaniline and TiO2, which suggests that the micelles formed by the anilinium‐alginate cations containing TiO2 are responsible for the transport properties of the PAT composites. POLYM. COMPOS., 31:1754–1761, 2010. © 2010 Society of Plastics Engineers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号