首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, styrene‐butadiene‐styrene tri‐block copolymer/multiwalled carbon nanotubes (SBS/MWNTs) were prepared by means of a solution blending method. To enhance the compatibility between SBS and MWNTs, the SBS grafted MWNTs (SBS‐g‐MWNTs) were used to replace MWNTs. The MWNTs were chemically hydroxylated by the dissolved KOH solution with ethanol as solvent and then reacted with 3‐Aminopropyltriethoxysilane (APTES) to functionalize them with amino groups (MWNT‐NH2). The SBS‐g‐MWNTs were finally obtained by the reaction of MWNT‐NH2 and maleic anhydride grafted SBS (MAH‐g‐SBS). The SBS‐g‐MWNTs were characterized by X‐ray photoelectron spectroscopy (XPS), Fourier transform‐infrared spectroscopy (FT‐IR), transmission electron microscopy (TEM), scanning electron microscope (SEM), and thermogravimetric analysis (TGA). The results showed that the SBS molecules were homogeneously bonded onto the surface of the MWNTs, leading to an improvement of the mechanical and electrical properties of SBS/SBS‐g‐MWNTs composites due to the excellent interfacial adhesion and dispersion of SBS‐g‐MWNTs in SBS. A series of continuous tests were carried out to explore the electrical‐mechanical properties of the SBS/SBS‐g‐MWNTs composites. We found out that, near the percolation threshold, the well‐dispersed SBS/SBS‐g‐MWNTs composites showed good piezoresistive characteristics and small mechanical destructions for the development of little deformation under vertical pressure. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42945.  相似文献   

2.
Grafting of maleic anhydride (MA) onto styrene–butadiene–styrene triblock copolymer (SBS) was carried out by free radical polymerization using supercritical carbon dioxide (SC CO2) as a solvent of MA and swelling agent of SBS. The effect of various factors such as monomer concentration, initiator concentration, SC CO2 pressure, and reaction time on grafting ratio was studied. SBS and the product (SBS‐g‐MA) were characterized by Fourier transform infrared spectroscopy (FTIR), gel permeation chromatography (GPC), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM). GPC data showed that the molecular weight of SBS‐g‐MA is bigger than that of SBS. DSC testing indicated that the glass transition temperature (Tg) of SBS‐g‐MA is higher than that of SBS. By SEM photo, we can observe that some particles which contain more oxygen atom grew out from the surface of SBS‐g‐MA when grafting ratio reached at 5.6%, and the amount and diameter of particles increased with increasing of grafting ratio. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 4425–4429, 2006  相似文献   

3.
Styrene–butadiene–styrene (SBS) was grafted with dibutyl maleate (DBM), methacrylic acid (MAA), or maleic anhydride (MAH) by 60Co γ‐rays. The grafted SBS was blended with polyamide 6 (PA6). The compatibility of the PA6/SBS blends was studied with scanning electron microscopy and rheological measurements. The results showed significant improvement in the compatibility of PA6 blended with MAH‐ or MAA‐grafted SBS, with the former being more effective, whereas grafting DBM was ineffective in this respect. Mechanisms of the compatibility enhancement and ineffectiveness are discussed. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

4.
This paper reports a simple route for the preparation of graphene/poly(styrene‐b‐butadiene‐b‐styrene) (SBS) nanocomposite films employing a vacuum filtration method. Graphene is exfoliated well by an electrochemical procedure and homogeneously dispersed in the polymer matrix. The prepared nanocomposite films were characterized by XRD, Fourier transform IR (FTIR) spectroscopy, X‐ray photoelectron spectroscopy (XPS), Raman spectroscopy, AFM and SEM. Morphological studies showed that graphene formed a smooth coating over the surface of SBS. The increase in graphene concentration induces the wrinkling of graphene sheets at the composite surface which causes a further increase in surface roughness. The FTIR, Raman and XPS spectra of graphene/SBS nanocomposite films indicate the strong interactions between graphene and the polymer matrix. According to the XRD patterns, introducing SBS into graphene did not modify the graphene structure additionally, i.e. the crystal lattice parameters do not depend on SBS content in graphene/SBS nanocomposite films. The graphene/SBS nanocomposite films also exhibited better hydrophobicity due to the increased surface roughness and lower sheet resistivity (reduced 10 times) compared to exfoliated graphene. © 2018 Society of Chemical Industry  相似文献   

5.
Thermoplastic elastomers of styrene–butadiene–styrene (SBS) triblock copolymers containing grafts of naphthopyran as side‐chain polymer were prepared by polymerization of naphthopyran acrylate monomer with a solution of SBS in tetrahydrofuran. Thin films of all grafted SBS polymers displayed photochromism, the decoloration kinetics of naphthopyran in the films was modeled by fitting biexponential equations to the photochromic decay curves after UV light irradiation. Stretching of the grafted SBS film at room temperature affected the fading rate constant k1 of the naphthopyran. The length of linker between photochromic naphthopyran moiety and the acrylate unit in monomer also affected the fading rate constant k1 of the naphthopyran in SBS elastomers. This study presents an example of tuning the photochromic properties of naphthopyran via two approaches, polymer structure, and stretching of films. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

6.
The viscoelastic relaxation of linear styrene–butadiene–styrene triblock copolymer (l‐SBS) and star styrene–butadiene–styrene triblock copolymer (s‐SBS) with four arms were investigated with differential scanning calorimetry and dynamic rheological measurements. Three characteristic viscoelastic responses of l‐SBS and s‐SBS in the plot of the loss tangent (tan δ) and temperature at different frequencies (ω's), which corresponded to the relaxation of the polybutadiene (PB) block (peak I), the glass transition of the polystyrene (PS) phase (peak II), and the mutual diffusion between the PB blocks and PS blocks (peak III), respectively, were observed in the experimental range. Although ω was 0.1 rad/s, a noticeable peak III was gained for both l‐SBS and s‐SBS. The dynamic storage modulus (G′) of l‐SBS showed two distinct types of behavior, depending on the temperature. At temperature (T) < T2 (where T2 is the temperature corresponding to peak II), G′ of l‐SBS displayed a very weak ω dependency. In contrast, at T > T2, G′ decayed much more rapidly. However, G′ of s‐SBS displayed a very weak ω dependency at both T < T2 and T > T2. Only near T2 did s‐SBS decay with ω a little sharply. These indicated, in contrast to l‐SBS, that s‐SBS still exhibited more elasticity even at T > T2 because of its crosslinking point between the PB blocks (the star structure). In the lower ω range, l‐SBS exhibited a stronger peak III than s‐SBS despite the same styrene content for l‐SBS and s‐SBS. The high tan δ value of peak III for l‐SBS was considered to be related to the internal friction among the PB blocks or the whole l‐SBS chain, not the PS blocks. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

7.
A star‐shape styrene–butadiene–styrene triblock copolymer SBS (802) was synthesized and fractionated into four fractions coded as 802‐F1 (four arms), 802‐F2 (two arms), 802‐F3 (one arm), and 802‐F4 by repeating fractional precipitation. Their weight‐average molecular weight (Mw) was measured by size‐exclusion chromatography combined with laser light scattering to be 16.0 × 104, 8.2 × 104, 4.3 × 104, and 1.19 × 104, respectively. The samples were, respectively, compression‐molded and solution‐cast to obtain the sheets coded as 802C, 802‐F1C, 802‐F2C, and 802S, 802‐F1S, 802‐F2S. The structures and mechanical properties of the sheets were characterized by 1H‐NMR, scanning electron microscope, wide‐angle X‐ray diffractometer, tensile testing, and dynamic mechanical thermal analysis. The results indicated that the compression‐molded 802‐F1C exhibited the higher tensile strength (σb, 28.4 MPa) and elongation at break (εb, 1610%), and its optical transmittance is much higher than those of 802C and 802‐F2C. This work revealed that the star‐shape SBS with four arms could be helpful in the enhancement of the properties as a result of good miscibility of the compression‐molded SBS sheets. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 95: 832–840, 2005  相似文献   

8.
A styrene–butadiene–styrene triblock copolymer (SBS) was grafted with polyoxyethylene via a ring‐opening reaction of an epoxidized styrene–butadiene– styrene triblock copolymer (ESBS) with monocarboxylic‐group‐terminated methoxypoly(ethylene glycol) (CMPEG). The latter was prepared through the esterification of methoxypoly(ethylene glycol) with maleic anhydride. The optimum conditions for the preparation of the graft copolymer were studied. The graft copolymer was characterized with Fourier transform infrared spectrophotometry. Its water absorbency, oil absorbency, emulsifying property, phase‐transfer catalysis property in the Williamson solid–liquid reaction, and use as a compatibilizer in the blending of SBS with oil‐resistant chlorohydrin rubber (CHR) were also studied. The optimum conditions were a CMPEG/epoxy group molar ratio of 1.5, an N,N‐dimethyl aniline/ESBS concentration of 5 wt %, and an ESBS concentration of 12–14 g/100 mL at 75–80°C for 10 h. The polyoxyethylene content could reach 0.27 mmol/g. The graft copolymer absorbed a certain amount of water, fairly resisted kerosene, and possessed good emulsifying and phase‐transfer catalysis properties, both of which were enhanced with increasing polyoxyethylene graft content. The graft copolymer could be used as a compatibilizer for a blend of SBS and CHR. A 3 wt % concentration of the graft copolymer based on a 50/50 blend could increase both the tensile strength and ultimate elongation of the blend about 1.7 times. The blend behaved like an oil‐resistant thermoplastic elastomer. Scanning electron microscopy demonstrated the improved compatibility of the two components by the graft copolymer. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

9.
We successfully synthesized an exfoliated styrene–butadiene–styrene triblock copolymer (SBS)/montmorillonite nanocomposite by anionic polymerization. Gel permeation chromatography showed that the introduction of organophilic montmorillonite (OMMT) resulted in a small high‐molecular‐weight fraction of SBS in the composites, leading to a slight increase in the weight‐average and number‐average molecular weights as well as the polydispersity index. The results from 1H‐NMR revealed that the introduction of OMMT almost did not affect the microstructure of the copolymer when the OMMT concentration was lower than 4 wt %. Transmission electron microscopy and X‐ray diffraction showed a completely exfoliated nanocomposite, in which both polystyrene and polybutadiene blocks entered the OMMT galleries, leading to the dispersion of OMMT layers on a nanoscale. The exfoliated nanocomposite exhibited higher thermal stability, glass‐transition temperature, elongation at break, and storage modulus than pure SBS. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci, 2006  相似文献   

10.
A styrene–butadiene–styrene block copolymer (SBS) was functionalized with N‐carbamyl maleamic acid (NCMA) using two peroxide initiators with the aim of grafting polar groups onto the molecular chains of the polymer. The influence of the concentration of benzoyl peroxide (BPO) and 2,5‐dimethyl, 2,5‐diterbuthylperoxihexane (DBPH) was studied. The concentration of peroxy groups ranged between 0.75 and 6 × 10?4 mol % while the concentration of NCMA was constant at 1 wt %. The reaction temperature was chosen according to the type of peroxide employed, being 140°C for BPO and 190°C for DBPH. FTIR spectra confirmed that NCMA was grafted onto the SBS macromolecules. It was found that the highest grafting level was achieved at a concentration of peroxy groups of about 3 × 10?4 mol %. Contact angle measurements were used to characterize the surface of the SBS and modified polymers. The contact angle of water drops decreased with the amount of NCMA grafted from 95°, the one corresponding to the SBS, to about 73°. T‐peel strength of polymer/polyurethane adhesive/polymer joints made with the modified polymers was larger than those prepared with the original SBS. The peel strength of SBS modified with 1.5 and 3 × 10?4 mol % of peroxy groups from BPO were five times larger than that of the original SBS. The materials modified using BPO showed peel strengths higher than the ones obtained with DBPH. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 4468–4477, 2006  相似文献   

11.
The factors influencing the mechanical properties of styrene–butadiene–styrene block copolymer (SBS) composites filled with liquid polybutadiene (LB)‐surface‐treated calcium carbonate (CaCO3) were investigated with respect to the molecular structure of the LB, the amount of the LB adsorbed on the CaCO3 surface, the heat treatment conditions, and the surface treatment method. The mechanical properties, such as the modulus, tensile strength at break, tear strength, storage modulus, and tension set, of the SBS composites were improved remarkably through the filling of CaCO3 surface‐treated with a carboxylated LB with a high content of 1,2‐double bonds. The heat treatment of LB–CaCO3 in air was also effective in enhancing such properties. When SBS, CaCO3, and LB were directly blended (with the integral blend method), secondary aggregation of CaCO3 took place, and the mechanical properties of the composite were significantly lower. In the integral blend method, LB functioned as a plasticizer. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

12.
A procedure to improve the properties of styrene‐butadiene‐styrene (SBS) copolymer modified bitumen by grafting of maleic anhydride (MAH) onto SBS in the presence of benzoyl peroxide (BPO) as initiator was proposed. The effects of the grafting degree (GD) on the properties of modified bitumen were investigated. FTIR spectroscopy was employed to verify the grafting of MAH onto SBS. The GD of MAH onto SBS was determined by a back titration procedure. To assess the effects of the GD of grafted SBS on properties of modified bitumen, the softening point, penetration, ductility, elastic recovery, penetration index, viscosity, storage stability, and dynamic shear properties were tested. Experimental results indicated that the SBS grafted with maleic anhydride (SBS‐g‐MAH) copolymer was successfully synthesized by solvothermal method, and different GD of the SBS‐g‐MAH was obtained by control the MAH concentration. The GD of the MAH onto SBS has great effect on the rheological properties of the modified bitumen, and the high temperature performance and storage stability of modified bitumen were improved with the GD of the MAH onto SBS increasing. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   

13.
Clay/styrene–butadiene–styrene (SBS) modified bitumen composites were prepared by melt blending with different contents of sodium montmorillonite (Na‐MMT) and organophilic montmorillonite (OMMT). The structures of clay/SBS modified bitumen composites were characterized by XRD. The XRD results showed that Na‐MMT/SBS modified bitumen composites may form an intercalated structure, whereas the OMMT/SBS modified bitumen composites may form an exfoliated structure. Effects of MMT on physical properties, dynamic rheological behaviors, and aging properties of SBS modified bitumen were investigated. The addition of Na‐MMT and OMMT increases both the softening point and viscosity of SBS modified bitumens and the clay/SBS modified bitumens exhibited higher complex modulus, lower phase angle. The high‐temperature storage stability can also be improved by clay with a proper amount added. Furthermore, clay/SBS modified bitumen composites showed better resistance to aging than SBS modified bitumen, which was ascribed to barrier of the intercalated or exfoliated structure to oxygen, reducing efficiently the oxidation of bitumen, and the degradation of SBS. POLYM. ENG. SCI., 47:1289–1295, 2007. © 2007 Society of Plastics Engineers  相似文献   

14.
Effect of compatibilization of styrene–butadiene–styrene (SBS) block copolymer in polypropylene/polystyrene (PP/PS) blends was studied by means of small angle X‐ray scattering (SAXS) and scanning electron microscope (SEM). According to SAXS, a certain amount of SBS was located at the interface in all the analyzed samples, forming the relatively thicker interface layer penetrating into homopolymers, and the thickness of the interface layer was quantified in terms of Porod light scattering theory. The incorporation of SBS into PP/PS blends resulted in a decrease in domain size following an emulsification curve as well as an uniform size distribution, and consequently, a fine dispersion of PP domains in the PS matrix. This effect was more pronounced when the concentration of SBS was higher. A critical concentration of SBS of 15% above which the interface layer approaches to saturation and domain size attains a steady‐state was observed. Further, the morphology fluctuation of unetched fracture surface of umcompatibilized and compatibilized blends was analyzed using an integral constant Q based on Debye‐Bueche light scattering theories. Variation of Q as a function of the concentration of SBS showed that, due to the penetrating interface layer, adhesion between phases was improved, making it possible for applied stress to transfer between phases and leading to more uniform stress distribution when blends were broken; accordingly, a more complicated morphology fluctuation of fracture surface appeared. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103:365–370, 2007  相似文献   

15.
Different polymers containing sulfonic groups attached to the phenyl rings were prepared by sulfonation of polystyrene (PS) and styrene‐block‐(ethylene‐co‐1‐butene)‐block‐styrene (SEBS). The sulfonation degree (SD) was varied between 1 and 20 mol% of the styrene units. Polyphase materials containing sulfonated units were prepared by blending styrene‐block‐butadiene‐block‐styrene (SBS), with both sulfonated PS and sulfonated SEBS in a Brabender mixer. Such a procedure was performed as an alternative route to direct sulfonation of SBS which is actually not selective towards benzene rings because of the great reactivity of the double bonds in polybutadiene (PB) blocks to sulfonation agents. Thermal and dynamic‐mechanic analysis, together with morphology characterization of the blends, is consistent with obtaining partially compatible blends characterized by higher Tg of the polystyrene domains and improved thermal stability. © 2001 Society of Chemical Industry  相似文献   

16.
Advanced polymer composites containing organic–inorganic fillers are gaining increasing attention due to their multifunctional applications. In this work, poly(styrene‐butadiene‐styrene) (SBS) composites containing magnetite‐functionalized graphene (FG) were prepared by a dissolution ? dispersion ? precipitation solution method. Evidently, through morphology studies, amounts of FG were well distributed in the SBS matrix. Improvements in neat SBS properties with respect to FG loading in terms of thermal stability, creep recovery and mechanical properties are presented. As expected, the addition of FG improved the thermal stability and mechanical properties of the composites. The yield strength and Young's modulus of the SBS increased by 66% and 146% at 5 wt% filler loading which can be attributed to the reinforcing nature of FG. Similarly, an increase in the storage and loss modulus of the composites showed a reinforcement effect of the filler even at low concentration. The results also showed the significant role of FG in improving the creep and recovery performance of the SBS copolymer. Creep deformation decreased with filler loading but increased with temperature. © 2017 Society of Chemical Industry  相似文献   

17.
A facile method for enhancing the interaction between pristine graphene and nonpolar rubber matrices was developed by preparing a new solution‐polymerized styrene‐butadiene‐p‐(2,2,2‐triphenylethyl)styrene (TPES) rubber (SBTR). SBTR macroradicals were formed by the thermal decomposition of a 1,1,1,2‐tetraphenylethane pendant. The macroradicals were successfully trapped by graphene through the formation of covalent bonds. This was confirmed by rotorless rheometer and X‐ray photoelectron spectroscopy measurements. The dispersion of graphene and interfacial interaction between graphene and the SBTR was significantly increased by increasing the TPES content in SBTR composites, as demonstrated by differential scanning calorimetry, scanning electron microscopy, rubber process analysis, and dynamic mechanical thermal analysis. The mechanical properties of the SBTR/GNS composites were significantly improved by the improved dispersion and the increased surface affinity of SBTR for graphene. The developed approach can be generally applied to the functionalization of other polymer matrices by copolymerizing TPES with other vinyl monomers for pristine graphene‐based composite materials. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44923.  相似文献   

18.
A measuring method for a conductivity change through a current change during extension deformation or compression deformation of conductive elastomeric composites composed of a polyaniline (PAn)/styrene–butadiene–styrene (SBS) triblock copolymer was established. The composites were prepared by in situ emulsion polymerization of aniline in the presence of SBS using dodecylbenzene sulfonic acid (DBSA) as an emulsifier and a dopant. The product was melt‐processed (MP), solution‐processed (SP), or secondary doped with m‐cresol (SSP). The results for measurement of the conductivity change of the composites processed by the three different methods showed that for the MP and SP samples conductivity increases with extension, whereas for the SSP sample when the PAn content is lower than the percolation threshold, conductivity diminishes with increasing extension, but when the PAn content exceeds the percolation threshold value, conductivity followed an empirical equation with a maximum value. During compression, the conductivities of most of the MP, SP, and SSP samples exhibited a maximum value with change of the compression force, except the MP sample with a higher PAn content, the conductivity of which increased with the compression force. All the differences are related to their different morphological structures. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 2156–2164, 2000  相似文献   

19.
Transparent poly(styrene‐butadiene‐styrene) (SBS)‐quantum dots (QDs) composites (SBS/CdTe QDs) that simultaneously possess strong photoluminescence (PL) and enhanced mechanical properties are presented for the first time based on the facile blending of SiO2‐hybridized CdTe QDs with SBS. UV–vis spectrum and fluorescence measurement show that SBS/CdTe QDs composites exhibit good optical properties. The results of transmission electron microscopy show good dispersion of CdTe QDs in the SBS matrix. The results of dynamic mechanical thermal analysis indicate that the micro‐phase separated structure of the SBS is exist in the composites, and the presence of CdTe QDs can lead to an decrease of glass transition temperatures of polybutadiene (PB) and polystyrene(PS) domains. In addition, mechanical tests reveal that the addition of CdTe QDs is a useful approach to improve the mechanical properties of SBS. Meanwhile, the fluorescent photographs taken under ultraviolet light prove that SBS/CdTe QDs composites possess strong PL. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011.  相似文献   

20.
The domain structure and miscibility in the solid state of a series of blends of styrene‐butadiene‐styrene (SBS) block copolymers and styrene‐glycidyl methacrylate (PS‐GMA) statistical copolymers with varying molecular weights and compositions were studied using small angle X‐ray scattering and dynamic mechanical thermal analysis. Depending on the molecular characteristics of each component, different types and degrees of solubilization of PS‐GMA in SBS were found which, in addition to the initially SBS phase morphology, lead to materials with multiphase domain morphologies with differences in size and structure. The degree of solubilization of PS‐GMA into the PS domains of SBS was found to be higher for blends containing PS‐GMA with lower molecular weight (Mw = 18 100 g mol?1) and lower GMA content (1 wt%) and/or for SBS with higher PS content (39 wt%) and longer PS blocks (Mw = 19 600 g mol?1). Localized solubilization of PS‐GMA in the middle of PS domains of SBS was found to be the most probable to occur for the systems under study, causing swelling of PS domains. However, uniform solubilization was also observed for SBS/PS‐GMA blends containing SBS with composition in the range of a morphological transition (PS block Mw = 19 600 g mol?1 and 39 wt% of PS) causing a morphological transition in the SBS copolymer (cylinder to lamella). Copyright © 2006 Crown in the right of Canada. Published by John Wiley & Sons, Ltd  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号