首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Dually responsive amphiphilic diblock copolymers consisting of hydrophilic poly(N‐isopropyl acrylamide) [poly(NIPAAm)] and hydrophobic poly(9‐anthracene methyl methacrylate) were synthesized by reversible addition fragmentation chain‐transfer (RAFT) polymerization with 3‐(benzyl sulfanyl thiocarbonyl sulfanyl) propionic acid as a chain‐transfer agent. In the first step, the poly(NIPAAm) chain was grown to make a macro‐RAFT agent, and in the second step, the chain was extended by hydrophobic 9‐anthryl methyl methacrylate to yield amphiphilic poly(N‐isopropyl acrylamide‐b‐9‐anthracene methyl methacrylate) block copolymers. The formation of copolymers with three different hydrophobic block lengths and a fixed hydrophilic block was confirmed from their molecular weights. The self‐assembly of these copolymers was studied through the determination of the lower critical solution temperature and critical micelle concentration of the copolymers in aqueous solution. The self‐assembled block copolymers displayed vesicular morphology in the case of the small hydrophobic chain, but the morphology gradually turned into a micellar type when the hydrophobic chain length was increased. The variations in the length and chemical composition of the blocks allowed the tuning of the block copolymer responsiveness toward both the pH and temperature. The resulting self‐assembled structures underwent thermally induced and pH‐induced morphological transitions from vesicles to micelles and vice versa in aqueous solution. These dually responsive amphiphilic diblock copolymers have potential applications in the encapsulation of both hydrophobic and hydrophilic drug molecules, as evidenced from the dye encapsulation studies. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46474.  相似文献   

2.
A series of pH‐temperature dual stimuli‐responsive random copolymers poly[N,N‐dimethylaminoethyl methacrylate‐co‐poly(poly(ethylene glycol) methyl ether methacrylate][poly(DMAEMA‐co‐MPEGMA)] were synthesized by free radical polymerization. The supramolecular hydrogel was formed by pseudopolyrotaxane, which was prepared with the host‐guest interactions between α‐cyclodextrin (α‐CD) and poly(ethylene glycol) (PEG) side chains. Fourier transform infrared (FT‐IR), nuclear magnetic resonance (1H NMR), and X‐ray diffraction (XRD) confirmed the structures of the hydrogels. The pH‐temperature dual stimuli responsive properties of the hydrogels were characterized by rheometer. Finally, the controllable drug release behavior of the hydrogel, which was used 5‐fluorouracil (5‐Fu) as the model drug, was investigated at different temperatures and different pH values. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43279.  相似文献   

3.
A novel series of quadruple responsive copolymers, poly(ethylene glycol)‐ss‐[poly(dimethylaminoethyl methacrylate)‐co‐poly(2‐nitrobenzyl methacrylate)] [PEG‐ss‐(PDMAEMA‐co‐PNBM)], were synthesized via atom transfer radical polymerization mediated by home‐made PEG‐based macro‐initiator labeled with disulfides. The obtained copolymers could self‐assemble in aqueous solution forming micelles with the disulfide bridge linking the hydrophilic coronas (PEG) and the hydrophobic cores (PDMAEMA‐co‐PNBM). Investigation on the resulted micelles indicated that the micelles could respond to various stimuli, that is, temperature, pH, the presence of dithiothreitol (DTT), and UV irradiation. Moreover, the responsive behavior of the micelles depends on the type of stimuli, that is, temperature change causes size change of the micelles, while UV irradiation leads to dissolution of the self‐assembled structures. Such stimulus‐dependent responsive behavior could be applied in smart materials that deal with multi‐tasks or in the construction of complex logic gate. The potential application of the multi‐responsive micelles in cargo release system was also evaluated using Nile Red (NR) as model molecule. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46675.  相似文献   

4.
This works aims at (i) studying the antiadhesive properties and the hemocompatibility of poly[2‐(dimethylamino)ethyl methacrylate]‐co‐poly[(ethylene glycol)methacrylate] [poly(DMAEMA‐co‐PEGMA)] copolymers and (ii) investigating the insulin delivery kinetics through hydrogels at physiological pH. A series of poly(DMAEMA‐co‐PEGMA) hydrogels have been synthesized, and their controlled composition was confirmed by X‐ray photoelectron spectroscopy. Then, antibiofouling properties of hydrogels—fibrinogen, erythrocytes, and thrombocytes adhesion—are correlated to their molecular compositions through their hydrophilic properties. As DMAEMA/PEGMA ratio of 70/30 (D70) offers the best compromise between pH sensitivity and hemocompatibility, it is selected for investigating the kinetic rate of insulin release at physiological pH, and the diffusion coefficient of insulin in gel is found to be 0.64 × 10?7 cm2 s?1. Overall, this study unveils that poly(DMAEMA‐co‐PEGMA) copolymers are promising hemocompatible materials for drug delivery systems. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42365.  相似文献   

5.
A pH‐sensitive hydrogel [P(CE‐co‐DMAEMA‐co‐MEG)] was synthesized by the free‐radical crosslinking polymerization of N,N‐dimethylaminoethyl methacrylate (DMAEMA), poly(ethylene glycol) methyl ether methacrylate(MPEG‐Mac) and methoxyl poly(ethylene glycol)‐poly(caprolactone)‐methacryloyl methchloride (PCE‐Mac). The effects of pH and monomer content on swelling property, swelling and deswelling kinetics of the hydrogels were examined and hydrogel microstructures were investigated by SEM. Sodium salicylate was chosen as a model drug and the controlled‐release properties of hydrogels were pilot studied. The results indicated that the swelling ratios of the gels in stimulated gastric fluids (SGF, pH = 1.4) were higher than those in stimulated intestinal fluids (SIF, pH = 7.4), and followed a non‐Fickian and a Fickian diffusion mechanism, respectively. In vitro release studies showed that its release rate depends on different swelling of the network as a function of the environmental pH and DMAEMA content. SEM micrographs showed homogenous pore structure of the hydrogel with open pores at pH 1.4. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40737.  相似文献   

6.
A versatile method is described to synthesize a new family of solvent‐responsive membranes whose response states can be not only tunable but also fixable via ultraviolet (UV) irradiation induced crosslinking. The atom transfer radical polymerization (ATRP) initiator 2‐bromoisobutyryl bromide was first immobilized on the poly(ethylene terephthalate) (PET) track‐etched membrane followed by room‐temperature ATRP grafting of poly(2‐hydroxyethyl methacrylate) (PHEMA) and poly(2‐hydroxyethyl methacrylate‐co‐2‐(dimethylamino)ethyl methacrylate) (P(HEMA‐co‐DMAEMA)) respectively. The hydroxyl groups of PHEMA were further reacted with cinnamoyl chloride (a photosensitive monomer) to obtain photo‐crosslinkable PET‐g‐PHEMA/CA membrane and PET‐g‐P(HEMA/CA‐co‐DMAEMA) membrane. The length of grafted polymer chains was controllable by varying the polymerization time. X‐ray photoelectron spectroscopy, Fourier transform infrared spectroscopy in attenuated total reflection and thermogravimetric analysis were employed to characterize the resulting membranes. The various membrane surface morphologies resulting from different states of the grafted chains in water and dimethylformamide were characterized by scanning electron microscopy. It was demonstrated that the grafted P(HEMA/CA‐co‐DMAEMA) chains had more pronounced solvent responsivity than the grafted PHEMA/CA chains. The surface morphologies of the grafted membranes could be adjusted using different solvents and fixed by UV irradiation crosslinking. © 2014 Society of Chemical Industry  相似文献   

7.
A new amphiphilic quaternary random ionomer (PIDHES) was used to construct self‐assembly films. PIDHES was prepared by a selective ionization of quaternary random copolymer, poly(N,N‐domethyl amimethyl methartylate‐co‐2‐hydroxypropyl methacrylate‐co‐2‐ethylhexyl acrylate‐co‐styrene) precursor, which was synthesized by free radical copolymerization of commercial hydrophilic monomers N, N‐domethyl amimethyl methartylate and 2‐hydroxypropyl methacrylate and hydrophobic monomers 2‐ethylhexyl acrylate and styrene PIDHES could self‐assemble into polymer micelles in water, which underwent orientated deposition in the electric field and ultimately produced secondary assembly films. Scanning electron microscopy studies showed that the resultant PIDHES secondary assembly film was smooth and compact. Moreover, it was found that PIDHES micelles concentration and electric‐field‐induced time had a strong influence on the morphologies of the resultant secondary assembly film. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

8.
Using styrene (St) and N,N′‐dimethylaminoethyl methacrylate (DMAEMA) as raw materials, monodispersed P(St‐co‐DMAEMA) nanoparticles (NPs) were first prepared via semi‐continuous emulsion polymerization, and using a stepwise acid–alkali post‐treatment, porous P(St‐co‐DMAEMA) NPs were then obtained and used to adsorb heavy metal ions in aqueous phase. Results showed that the post‐treatment conditions including temperature, initial pH and time of acid–alkali treatment had significant effects on the morphology of the porous P(St‐co‐DMAEMA) NPs, with higher temperature, more extreme pH condition and longer treatment time resulting in larger pores and volume swelling ratio. Under the optimized acid–alkali post‐treatment conditions (60 °C, acid treatment at pH = 4.0 for 1 h and then alkali treatment at pH = 10.0 for 1 h), the obtained porous NPs had nearly 15 times the surface area and 1.5 times the amount of surface amino groups than the corresponding solid NPs. An analysis of the mechanism of metal ion adsorption on the porous NPs indicated that the adsorbed amount of metal ions was the result of synergistic effect of physical and chemical adsorption, which was closely related to the porous NP surface area, amount of surface of amino groups and the volume of the ions. © 2018 Society of Chemical Industry  相似文献   

9.
The experiment and dissipative particle dynamics simulation were carried out on four polymers with different block ratios for the investigation of the structure–property relationship of (poly(ε‐caprolactone)2‐[poly(2‐(diethylamino)ethyl methacrylate)‐b‐poly(poly(ethylene glycol) methyl ether methacrylate)]2 [(PCL)2(PDEA‐b‐PPEGMA)2] micelles. The miktoarm star polymers assembled into spherical micelles composed of PCL core, pH‐sensitive PDEA mesosphere and poly (ethylene glycol) methyl ether methacrylate (PPEGMA) shell. When decreasing pH from 7.4 to 5.0, the hydrodynamic diameter and transmittance of (PCL)2(PDEA‐b‐PPEGMA)2 micelles increased along with globule‐uneven‐extended conformational transitions, owing to the protonation of tertiary amine groups of DEA at lower pH conditions. Doxorubicin (DOX) was mainly loaded in the pH‐sensitive layer, and more DOX were loaded in the core when increasing drug concentrations. The in vitro DOX release from the micelles was significantly accelerated by decreasing pH from 7.4 to 5.0. The results demonstrated that the pH‐sensitive micelles could be used as an efficient carrier for hydrophobic anticancer drugs, achieving controlled and sustained drug release. © 2014 American Institute of Chemical Engineers AIChE J, 60: 3634–3646, 2014  相似文献   

10.
Temperature, pH, and reduction triple‐stimuli‐responsive inner‐layer crosslinked micelles as nanocarriers for drug delivery and release are designed. The well‐defined tetrablock copolymer poly(polyethylene glycol methacrylate)–poly[2‐(dimethylamino) ethyl methacrylate]–poly(N‐isopropylacrylamide)–poly(methylacrylic acid) (PPEGMA‐PDMAEMA‐PNIPAM‐PMAA) is synthesized via atom transfer radical polymerization, click chemistry, and esterolysis reaction. The tetrablock copolymer self‐assembles into noncrosslinked micelles in acidic aqueous solution. The core‐crosslinked micelles, shell‐crosslinked micelles, and shell–core dilayer‐crosslinked micelles are prepared via quaternization reaction or carbodiimide chemistry reaction. The crosslinked micelles are used as drug carriers to load doxorubicin (DOX), and the drug encapsulation efficiency with 20% feed ratio reached 59.2%, 73.1%, and 86.1%, respectively. The cumulative release rate of DOX is accelerated by single or combined stimulations. The MTT (3‐(4,5‐Dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide) assay verifies that the inner‐layer crosslinked micelles show excellent cytocompatibility, and DOX‐loaded micelles exhibit significantly higher inhibition for HepG2 cell proliferation. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46714.  相似文献   

11.
Poly(diglycidyl maleate‐co‐stearyl methacrylate) (P(DGMA‐co‐SMA)) with reactive epoxy groups was synthesized by reaction of poly(maleic anhydride‐co‐stearyl methacrylate) (P(MA‐co‐SMA)) and epichlorohydrin. The effect of precipitant on self‐assembly behaviors of the resultant copolymer was investigated. It was found that vesicles and nanotubule liked aggregates can be obtained through self‐assembly of P(DGMA‐co‐SMA) in THF solution using CH3CH2OH (EtOH) as precipitant while spheral aggregates can be obtained using H2O as precipitant. The mechanism of the self‐assembly behavior was discussed. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

12.
Hydrogels have been widely used as mild biomaterials due to their bio‐affinity, high drug loading capability and controllable release profiles. However, hydrogel‐based carriers are greatly limited for the delivery of hydrophobic payloads due to the lack of hydrophobic binding sites. Herein, nano‐liposome micelles were embedded in semi‐interpenetrating poly[(N‐isopropylacrylamide)‐co‐chitosan] (PNIPAAm‐co‐CS) and poly[(N‐isopropylacrylamide)‐co‐(sodium alginate)] (PNIPAAm‐co‐SA) hydrogels which were responsive to both temperature and pH, thereby establishing tunable nanocomposite hydrogel delivery systems. Nano‐micelles formed via the self‐assembly of phospholipid could serve as the link between hydrophobic drug and hydrophilic hydrogel due to their special amphiphilic structure. The results of transmission and scanning electron microscopies and infrared spectroscopy showed that the porous hydrogels were successfully fabricated and the liposomes encapsulated with baicalein could be well contained in the network. In addition, the experimental results of response release in vitro revealed that the smart hydrogels showed different degree of sensitiveness under different pH and temperature stimuli. The results of the study demonstrate that combining PNIPAAm‐co‐SA and PNIPAAm‐co‐CS hydrogels with liposomes encapsulated with hydrophobic drugs is a feasible method for hydrophobic drug delivery and have potential application prospects in the medical field. © 2018 Society of Chemical Industry  相似文献   

13.
pH and thermo‐responsive graft copolymers are reported where thermo‐responsive poly(N‐isopropylacrylamide) [poly(NIPAAm), poly A ], poly(N‐isopropylacrylamide‐co‐2‐(diethylamino) ethyl methacrylate) [poly(NIPAAm‐co‐DEA), poly B ], and poly(N‐isopropylacrylamide‐co‐methacrylic acid) [poly(NIPAAm‐co‐MAA), poly C ] have been installed to benzaldehyde grafted polyethylene glycol (PEG) back bone following introducing a pH responsive benzoic‐imine bond. All the prepared graft copolymers for PEG‐g‐poly(NIPAAm) [ P‐N1 ], PEG‐g‐poly(NIPAAm‐co‐DEA) [ P‐N2 ], and PEG‐g‐poly(NIPAAm‐co‐MAA) [ P‐N3 ] were characterized by 1H‐NMR to assure the successful synthesis of the expected polymers. Molecular weight of all synthesized polymers was evaluated following gel permeation chromatography. The lower critical solution temperature of graft copolymers varied significantly when grafted to benzaldehyde containing PEG and after further functionalization of copolymer based poly(NIPAAm). The contact angle experiment showed the changes in hydrophilic/hydrophobic behavior when the polymers were exposed to different pH and temperature. Particle size measurement investigation by dynamic light scattering was performed to rectify thermo and pH responsiveness of all prepared polymers. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

14.
Narrow‐distribution, well‐defined comb‐like amphiphilic copolymers are reported in this work. The copolymers are composed of poly(methyl methacrylate‐co‐2‐hydroxyethyl methacrylate) (P(MMA‐co‐HEMA)) as the backbones and poly(2‐(dimethylamino)ethyl methacrylate) (PDMAEMA) as the grafted chains, with the copolymer backbones being synthesized via atom‐transfer radical polymerization (ATRP) and the grafted chains by oxyanionic polymerization. The copolymers were characterized by gel permeation chromatography (GPC), Fourier‐transform infrared (FT‐IR) spectroscopy and 1H NMR spectroscopy. The aggregation behavior in aqueous solutions of the comb‐like amphiphilic copolymers was also investigated. 1H NMR spectroscopic and surface tension measurements all indicated that the copolymers could form micelles in aqueous solutions and they possessed high surface activity. The results of dynamic light scattering (DLS) and scanning electron microscopy (SEM) investigations showed that the hydrodynamic diameters of the comb‐like amphiphilic copolymer aggregates increased with dilution. Because of the protonizable properties of the graft chains, the surface activity properties and micellar state can be easily modulated by variations in pH. Copyright © 2004 Society of Chemical Industry  相似文献   

15.
New hybrid poly(hydroxyethyl methacrylate‐co‐methyl methacrylate)‐g‐polyhedral oligosilsesquioxane [poly(HEMA‐co‐MMA)‐g‐POSS] nanocomposites were synthesized by the combination of reversible addition fragmentation chain transfer (RAFT) polymerization and click chemistry using a grafting to protocol. Initially, the random copolymer poly(HEMA‐co‐MMA) was prepared by RAFT polymerization of HEMA and MMA. Alkynyl side groups were introduced onto the polymeric backbones by esterification reaction between 4‐pentynoic acid and the hydroxyl groups on poly(HEMA‐co‐MMA). Azide‐substituted POSS (POSS? N3) was prepared by the reaction of chloropropyl‐heptaisobutyl‐substituted POSS with NaN3. The click reaction of poly(HEMA‐co‐MMA)‐alkyne and POSS? N3 using CuBr/PMDEATA as a catalyst afforded poly(HEMA‐co‐MMA)‐g‐POSS. The structure of the organic/inorganic hybrid material was investigated by Fourier transformed infrared, 1H‐NMR, and 29Si‐NMR. The elemental mapping analysis of the hybrid using X‐ray photoelectron spectroscopy and EDX also suggest the formation of poly(HEMA‐co‐MMA)‐anchored POSS nanocomposites. The XRD spectrum of the nanocomposites gives evidence that the incorporation of POSS moiety leads to a hybrid physical structure. The morphological feature of the hybrid nanocomposites as captured by field emission scanning electron microscopy and transmission electron microscopic analyses indicate that a thick layer of polymer brushes was immobilized on the POSS cubic nanostructures. The gel permeation chromatography analysis of poly(HEMA‐co‐MMA) and poly(HEMA‐co‐MMA)‐g‐POSS further suggests the preparation of nanocomposites by the combination of RAFT and click chemistry. The thermogravimetric analysis revealed that the thermal property of the poly(HEMA‐co‐MMA) copolymer was significantly improved by the inclusion of POSS in the copolymer matrix. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

16.
In this article, the multiple stimulus‐responsive organic/inorganic hybrid hydrogels by combining poly(2‐(2‐methoxyethoxy) ethyl methacrylate‐co‐oligo (ethylene glycol) methacrylate‐co‐acrylic acid) (PMOA) hydrogel with magnetic attapulgite/Fe3O4 (AT‐Fe3O4) nanoparticles were applied to the removal of Rhodamine B (RhB) dye from wastewater. The adsorption of RhB by the hydrogels was carried out under different external environmental, such as pH, temperature and magnetic‐field. The results showed that the hydrogels still possessed temperature, pH and magnetic‐field sensitivity during the adsorption process, which indicated that the adsorption could be controlled by the hydrogels responsive. The dye adsorption had a significant increment at 30°C and the removal of RhB could reach to over 95%. Besides, the low pH values were also favorable for the RhB adsorption, the removal was over 90% at pH = 4.56. Kinetic studies showed that the pseudo‐second order kinetic model well fitted the experimental data. The rate constant of adsorption was 0.0379 g/mg min. Langmuir and Freundlich isotherm models were applied to the equilibrium adsorption for describing the interaction between sorbent and adsorbate. The maximum KL and KF were 2.23 (L/g) and 0.87 (mg/g) at 30°C, respectively. Under the external magnetic‐field, the adsorption rate significantly increased within 250 min and the hydrogels could be separated easily from wastewater. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42244.  相似文献   

17.
Novel pH‐responsive poly(2‐succinyloxyethylmethacrylate)‐b‐poly[(N‐4‐vinylbenzyl),N,N‐diethylamine] [poly(SEMA‐b‐VEA)] diblock copolymers were synthesized via reversible addition fragmentation transfer (RAFT) polymerization to investigate their self‐assembly micellar behavior. The self‐assembly behaviors of synthesized diblock copolymers with distinct molecular weights (labeled (1) to) were confirmed by 1H NMR spectroscopy, TEM and dynamic light scattering measurements. Doxorubicin hydrochloride (DOX) loading capacity was evaluated, and the in vitro cytotoxicity effect of DOX‐loaded diblock copolymer was also studied by assessing the survival rate of the breast cancer cell line MCF‐7 with 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide (MTT) assay. The results exhibited remarkable controlled release in the MTT assay. The DOX encapsulation efficiency was calculated to be 96.4%. The size and zeta potential of DOX‐loaded poly(SEMA‐b‐VEA) diblock copolymers were 204 nm and +5.7 mV at a pH of 7.4. DOX release values after 440 h at pH 7.4, 5.4 and 4 were 22.15%, 31.43% and 47.06%, respectively. The released values of DOX‐loaded poly(SEMA‐b‐VEA) and at pH 7.4 were 22.15%, 20.5% and 17.5%, respectively. Cell survival ratios were 18.9%, 23.16% and 16.92% after 72 h. Poly(SEMA‐b‐VEA) copolymers can be considered in nanomedicine applications due to their excellent pH‐responsive micellar behavior. © 2017 Society of Chemical Industry  相似文献   

18.
The self‐assembly of pH‐responsive poly (methyl methacrylate‐co‐acrylic acid) latex particles at emulsion droplet interfaces was achieved. Raising pH increases the hydrophilicity of the latex particles in situ and the latex particle acts as an efficient particulate emulsifier self‐assembling at emulsion droplet interface at around pH 10–11 but exhibits no emulsifier activity at higher pH. This effect can be reversibly induced simply by varying the aqueous phase pH and thus the latex emulsifier can be reassembled. The effect factors, including the aqueous phase pH, the surface carboxyl content, ζ‐Potential of the latex particles and oil phase solvent have been investigated. Using monomer as oil phase, the latex particles could stabilize emulsion droplets during polymerization and cage‐like polymer microspheres with hollow core/porous shell structure were obtained after polymerization. The mechanism of the latex particles self‐assembly was discussed. The morphologies of emulsion and microspheres were characterized by optical microscopy, scanning electron microscopy, and transmission electron microscopy. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

19.
Microcapsules based on a phase changing paraffin core and modified titanium dioxide–poly(methyl methacrylate‐co‐butyl acrylate) [P(MMA‐co‐BA)] hybrid shell were prepared via a Pickering emulsion method in this study. The microcapsules exhibit an irregularly spherical morphology with the size range of 3–24 µm. The addition of BA can enhance the toughness of the brittle polymer poly(methyl methacrylate) and improve the thermal reliability of the phase change microcapsules. The ratio of BA/MMA is in the range of 0.09–0.14, and the ratio of the monomer/paraffin is varied from 0.45 to 0.60. These microcapsules exhibit a well‐defined morphology and good thermal stability. The actual core content of the microcapsules reaches 36.09%, with an encapsulation efficiency of 73.07%. Furthermore, the prepared microcapsules present the high thermal reliability for latent‐heat storage and release after 2000 thermal cycles. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46447.  相似文献   

20.
Poly[(dimethylaminoethyl methacrylate)‐co‐(acrylic acid)] [poly(DMAEMA‐co‐AAc)] hydrogels have been synthesized by UV‐induced copolymerization of dimethylaminoethyl methacrylate (DMAEMA) and acrylic acid monomer. The effects of pH and ionic strength on the swelling behaviour of poly(DMAEMA‐co‐AAc) hydrogels were investigated in detail. It was found that there is minimal equilibrium swelling ratio (ESR) for the hydrogels with the change of pH, and the pH at minimal ESR of the hydrogels was defined by the isoelectric points (IEP), similar to the situation with protein molecules. The IEP of the hydrogels shifted to higher values with increase in the DMAEMA content in the hydrogels. Antipolyelectrolyte behaviour of the hydrogels at a pH near the IEP was observed as well, and the ESR increased with increasing ionic strength. The study of swelling kinetics of the hydrogels showed that the swelling process was Fickian at the IEP and non‐Fickian when the pH deviated from the IEP. Copyright © 2003 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号