首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Emulsion paper–plastic nanometer laminating adhesive of 1.5% organic montmorillonite (OMMT) was prepared by OMMT intercalating polyacrylate‐system materials. In this article, it was discovered that nanometer‐laminating adhesive has better adhesion, smaller latex particles size, lower surface tension, and higher drying speed than general laminating adhesive. The rheologic behavior of the emulsion was discussed and it was shown that the value of n (the flow index of emulsion) was reduced and viscous flow activation energy (Ea) was increased. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 872–877, 2005  相似文献   

2.
An organic conductive glue based on a blend of poly(3,4‐ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) and d ‐sorbitol was examined for laminating conductors to crystalline silicon. The PEDOT:PSS glue functions as a high‐work‐function solution processable conductor and exhibits an ohmic contact on p‐type silicon and a rectifying contact on n‐type silicon. Under illumination, the n‐Si/PEDOT:PSS:d ‐sorbitol junctions exhibit current–voltage characteristics suggesting minority carrier trap states, leading to charge recombination at the silicon/polymer interface. Conductive glue for laminating to crystalline silicon is desirable for making electrical contacts to flexible materials such as molecular semiconductors, graphene or transparent conductive oxides. These materials could eliminate the need for metal contacts to the front face of silicon solar cells. Conductive glue could prove especially useful for laminating to textured silicon or novel micro‐ or nanostructured silicon materials. © 2018 Society of Chemical Industry  相似文献   

3.
This publication shows the synthesis of the water‐borne removable pressure‐sensitive adhesive (PSA) based on acrylates and the influence of parameters such as internal emulsifiers on peel adhesion on steel and also the influence of N‐methylol acrylamide and plasticizers on peel adhesion on glass, poly(vinyl chloride), and polypropylene during aging time. Removable and repositionable pressure‐sensitive adhesives based on acrylic polymers are used for the production of removable memo notes, paper and foil labels, double‐sided tapes, carrier‐free tapes to protective films, and manufacturing aids. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 886–892, 2005  相似文献   

4.
In this work, a novel approach to improve the antifouling properties of membrane surfaces was developed. First, a polydopamine layer was attached onto the surface of an ultrahigh molecular weight polyethylene/fabric composite microporous membrane based on dopamine self‐polymerization and adhesive behavior. Then, methoxy polyethylene glycol amine was covalently bonded with the polydopamine layer via a Schiff base reaction. The physicochemical properties of the modified composite membrane surface were investigated, and the results indicated this modification could effectively enhance the membrane surface hydrophilicity. Furthermore, the protein fouling resistance of both dopamine‐coated and methoxy polyethylene glycol amine immobilized composite membranes was evaluated. It was found that a dopamine coating cannot obviously enhance the membrane antifouling properties due to its strong bioadhesion behavior. However, the antifouling properties of the composite membranes were significantly improved after being immobilized with a methoxy polyethylene glycol amine layer. Consequently, a layer‐by‐layer modified composite membrane with excellent antifouling property was obtained. The pure water flux and flux recovery ratio of the resultant membrane were 764 L m?2 h?1 and 83%, respectively. The aim of this paper was to provide an effective approach to optimizing the separation efficiency and antifouling performance of the ultrahigh molecular weight polyethylene/fabric composite membrane. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46428.  相似文献   

5.
Polymeric multilayer films are widely used in food packaging due to their versatility. However, there are still some properties that might be improved, such as gas and vapor barrier behaviors. The incorporation of boron nitride into polymer matrixes is emerging as a potential method for the improvement of barrier properties due to its lamellar structure. In this context, our work investigates the addition of boron nitride into a bicomponent reactive polyurethane (PU), which could be used as an adhesive and improve the barrier layer. This material could be used as an alternative to aluminum foil in food packaging. Different concentrations of two different sizes of boron nitride (BN) particles were added to the PU adhesive: micro-structured boron nitride (BNm) and nano-structured boron nitride (BNn). The aim was to investigate the influence on the barrier properties against moisture and the peeling resistance. Field emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD) were performed to characterize the boron nitride samples. The effect of BNm or BNn addition on the glass transition of the nanocomposites was investigated by differential scanning calorimetry (DSC). Barrier properties were measured by a water vapor permeation test and the practical adhesion of laminates with BN/PU adhesives was characterized using peeling tests. The nanocomposites achieved reduction in water vapor permeance of up to 50% and a 37% increase in mechanical adhesion properties compared to the PU adhesive. The results revealed the high potential of boron nitride/PU adhesives for food packaging applications.  相似文献   

6.
Tough biodegradable films were prepared using a poly(vinyl alcohol) (PVA)/poly(vinyl pyrrolidone) (PVP) (1:1) blend with plasticizers of glycerol (GLY), sorbitol (SOR), and their (one to one) mixture. We studied the effect of plasticization on the structural, thermal, and mechanical properties of the PVA/PVP blend films. Fourier transform infrared spectra indicated good miscibility of the two components due to the H‐bonding between the PVA and PVP molecules. The addition of plasticizers reduced the interaction between PVA and PVP, evidenced by an increase in the intensity of PVA diffraction peaks observed in the X‐ray diffraction (XRD) characterization. Thermal degradation of the blends increased as a function of the plasticizer used. GLY affected thermal degradation more than SOR and the mixtures. The incorporation of the plasticizers promoted the growth of PVA crystals as evidenced by XRD patterns and the enthalpy of fusion (ΔHf) obtained by differential scanning calorimetry measurements. The introduction of SOR to the binary blend increased toughness seven times and imparted simultaneous and pronounced improvements to maximum tensile stress and elongation at break. This behavior holds out great promise for the development of a new generation of mechanically robust, yet thoroughly biodegradable materials that could effectively supplant conventional polymers in demanding applications. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46406.  相似文献   

7.
Isolated corn hull arabinoxylan was dissolved in water and provided a clear solution. Plasticizer (glycerol, propylene glycol, or sorbitol) was added to the arabinoxylan solution at 0–20 wt % (film dry weight), which was cast into stable films. Film thickness ranged from 22 to 32 μm. Mechanical properties, moisture content, and water vapor permeability (WVP) were studied for the arabinoxylan‐based films as a function of plasticizer concentration. Measured data for the corn hull arabinoxylan–based films were 13–18 wt % moisture content, 10–61 MPa tensile strength, 365–1320 MPa modulus, 6–12% elongation, and 0.23–0.43 × 10?10 g m?1 Pa?1 s?1 water vapor permeability. Plasticized arabinoxylan films produced in this study had lower WVPs than those of unplasticized films, which is likely attributable to the phenomenon known as antiplasticization. Scanning electron micrographs showed a homogeneous structure on film surfaces. Films containing sorbitol had the best moisture barrier properties. When grapes were coated with arabinoxylan and arabinoxylan/sorbitol films, weight loss rates of the fruit decreased by 18 and 41%, respectively, after 7 days. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 2896–2902, 2004  相似文献   

8.
Polyurethane (PU) has been widely used as a glue in various areas. However, adhesion in the presence of water is greatly impeded and results in most synthetic adhesive failure. In this study, we designed and synthesized a novel PU construction; underwater PU adhesives were created by the incorporation of synthetic glycerol monomethacrylate (GMA). Furthermore, the urethane structure helped the adhesive eliminate the interfacial water barrier through interactions that were stronger than hydrogen bonding, and GMA as a crosslinking agent was used to generate post‐covalent‐crosslinking networks through radical polymerization. This enhanced the cohesion so the diffusion of water molecules could be overcome. Fourier transform infrared spectroscopy, thermogravimetric analysis, underwater adhesion measurements, and tensile tests were used to characterize the chemical and mechanical properties of the as‐obtained adhesive. This led to an adhesive with a better mechanical strength and interfacial adhesion in water, and the results show that the mechanical properties (tensile strength, Young's modulus, and tensile elongation) of the GMA–PU adhesive were higher than those of the pure PU. As for the 4% GMA, the tensile strength was enhanced by 24.3% and the elongation was enhanced by 125.23% over those of the pure PU. This confirmed that the incorporation of GMA into the PU matrix indeed induced increasing cohesion, and the sample's adhesive strength was 21.19 ± 3.9 MPa; this indicated a superior adhesive strength over that of the pure PU. In addition, we can foresee that underwater adhesion will play an important role in prospective surgery and engineering areas. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46579.  相似文献   

9.
Sorbitol‐type nucleating agents used as clarifiers for polypropylene (PP) show a complex interplay of phase and crystallization behavior. To study the crystallization behavior, cooling measurements were performed by fast scanning calorimetry using rates between 10 and 4000 K s?1. These rates correspond to cooling rates used in processing. These measurements were combined with conventional differential scanning calorimetry (DSC) measurements at 10 K min?1. The optical properties were characterized by haze measurements. For this investigation the commercially available clarifiers 1,3:2,4‐bis(3,4‐dimethylbenzylidene)sorbitol and 1,2,3‐tridesoxy‐4,6:5,7‐bis‐O‐[(4‐propylphenyl)methylene]nonitol were added to PP in various amounts up to 0.6 wt%. At relatively slow cooling rates only a single crystallization process was observed. In contrast, fast cooling leads to a complex crystallization behavior with up to four different crystallization processes. It was found that the temperature of the main crystallization process during fast cooling correlates with the optical properties from haze measurements. Finally, the cooling rate dependence of the different crystallization processes is discussed in terms of nucleating efficiency of the clarifiers. We conclude that the results of conventional DSC measurements cannot be extrapolated in a simple way to describe the nucleation activity of nucleating agents at cooling conditions relevant during processing. © 2018 Society of Chemical Industry  相似文献   

10.
BACKGROUND: The influence of methanol feed rate on recombinant human growth hormone (rhGH) production by Pichia pastoris hGH‐Mut+ in medium containing sorbitol was investigated at three different specific growth rates (µ), namely, 0.02 (MS‐0.02), 0.03 (MS‐0.03), and 0.04 (MS‐0.04). RESULTS: Increasing methanol feed rate above MS‐0.03 did not affect sorbitol consumption, showing that µ = 0.03 h?1 is a threshold limiting value, above which sorbitol utilization became independent of methanol feed rate. Moreover, when sorbitol was consumed, no further cell growth was observed. Increase in methanol feed rate triggered cell synthesis and the highest cell concentration was obtained at MS‐0.04 as 48 g L?1 (t = 18 h); whereas, the highest rhGH production, 270 mg L?1, was obtained at MS‐0.03 as a consequence of lower extracellular protease production and higher AOX activity (41 U g?1 CDW). Oxygen uptake rate increased with increasing µ, having the maximum value, 76.6 mmol m?3 s?1, at MS‐0.04. KLa had a tendency to increase with µ, having a maximum value of 0.15 s?1 at MS‐0.04 (t = 15 h). CONCLUSION: By considering rhGH concentration and oxygen transfer characteristics, the bioprocess can be improved by a two‐stage feeding strategy, operating at MS‐0.04 at the beginning of fermentation, and thereafter shifting to MS‐0.03. Copyright © 2009 Society of Chemical Industry  相似文献   

11.
The packaging industry generates a high volume of wastes; so that, there is a high demand of biodegradable materials, which do not damage the environment. Nowadays, there is an interesting consumption of polylactic acid (PLA) due to its biodegradable features. This work focuses on the improvement of mechanical properties of PLA adhesion joints for uses in the packaging industry. In order to achieve that purpose, atmospheric plasma treatment is used to selectively modify PLA surface properties. The obtained experimental results show that the atmospheric plasma treatment is suitable to increase the mechanical performance of PLA–PLA adhesive joints. Optimum conditions for the atmospheric plasma treatment were obtained with a nozzle–substrate distance of 10 mm and an advance rate in the 100–300 mm s?1 range; for these particular conditions, the effectiveness of the surface modification is the highest. The main plasma‐acting mechanisms are microetching together with the insertion of polar groups which lead to an interesting synergy that causes a remarkable increase in mechanical properties of adhesion joints. In particular, the shear strength of untreated PLA–PLA adhesion joints is close to 50 N cm?2 and this value is increased up to values of about 168.7 N cm?2 with optimum plasma treatment conditions. This indicates that atmospheric plasma treatment is both a technical and an environmental friendly technique to improve mechanical performance of PLA adhesive joints. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42391.  相似文献   

12.
A series of Mannich base curing agents were synthesized by using different structured phenols and amines. The phenols were phenol, o‐cresol, and nonylphenol, and the amines were diethylenetriamine, m‐xylylenediamine, and JEFFAMINE D230 polyetheramine. The chemical structures of Mannich bases were confirmed by 1H nuclear magnetic resonance and Fourier transform infrared spectroscopy. The curing agents had low viscosities in the range of 19.9 to 1549 mPa s. The curing behavior of diglycidyl ether of bisphenol A with these curing agents was studied by differential scanning calorimetry. The mechanical properties and thermal properties of the cured epoxies were also investigated and compared. Lap‐shear adhesion in air and underwater was studied by using stainless steel substrates, and the adhesion after ageing in hot water (80 °C) was also investigated. Adhesive cured with phenol modified m‐xylylenediamine showed the highest underwater adhesion around 5.9 MPa, which was comparable to other ones tested in air. In addition, the high adhesive strength was kept after ageing in hot water for 7 days. The structural influence of the curing agents on mechanical property and adhesive performances were discussed. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45688.  相似文献   

13.
新型铝箔级层合胶的研制   总被引:2,自引:2,他引:0  
介绍一种新型的铝箔纸层合胶粘剂,其以醋酸乙烯酯、丙烯酸为混合单体,并在聚合时加入一定量的淀粉、邻苯二甲酸二丁酯,得到的胶粘剂具有较强的粘合性,较好的流平性。  相似文献   

14.
Polymer electrolyte blend membranes composed of sulfonated block‐graft polyimide (S‐bg‐PI) and sulfonated polybenzimidazole (sPBI) were prepared and characterized. The proton conductivity and oxygen permeability coefficient of the novel blend membrane S‐bg‐PI/sPBI (7 wt%) were 0.38 S cm?1 at 90 °C and 98% relative humidity and 7.2 × 10?13 cm3(STP) cm (cm2 s cmHg)?1 at 35 °C and 76 cmHg, respectively, while those of Nafion® were 0.15 S cm?1 and 1.1 × 10?10 cm3(STP) cm (cm2 s cmHg)?1 under the same conditions. The apparent (proton/oxygen transport) selectivity calculated from the proton conductivity and the oxygen permeability coefficient in the S‐bg‐PI/sPBI (7 wt%) membrane was 300 times larger than that determined in the Nafion membrane. Besides, the excellent gas barrier properties based on an acid ? base interaction in the blend membranes are expected to suppress the generation of hydrogen peroxide and reactive oxygen species, which will degrade fuel cells during operation. The excellent proton conductivity and gas barrier properties of the novel membranes promise their application for future fuel cell membranes. © 2015 Society of Chemical Industry  相似文献   

15.
Coating and laminating processes play an important role in textile industry. They are frequently used to produce fabric laminates during which the physical properties and appearance of textile fabrics are modified and enhanced. Currently, the adhesive property testing of a fabric laminate is done so by the use of pulling test machines such as Universal Tensile Tester, which measures the strength required to peel the tested materials apart. The adhesive test to date has not yet been performed using a newly developed machine, Rigid‐Body Pendulum Rheometer (RPR). This study was to establish a more effective method for fast‐evaluating adhesive properties of fabric laminates by assessing the performance of RPR. Specifically, RPR and Universal Tensile Tester were used to measure, respectively, the viscosity and peeling strength of PET/TPU (thermoplastic polyurethane) and nylon/TPU in response to UV exposure and water immersion. RPR can continuously observe and record viscosity behavior of tested samples in various temperature condition including from low temperature to high temperature, it not only measures viscosity speed, it also detects the differences in crosslinking and measures data generated during the softening process when the balanced time was achieved during the oscillations procedure. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 2855–2863, 2007  相似文献   

16.
An aromatic polyimide (3,6‐CPI ) was prepared by the polymerization of pyromellitic dianhydride and diamine (3,6‐CDA ) containing a rigid planar carbazole moiety. The synthesized polyimide shows outstanding barrier properties with oxygen permeation rate and water vapor permeation rate low at 7.9 cm3 m?2 day?1 and 9.8 g m?2 day?1, respectively. Wide angle X‐ray diffraction, positron annihilation lifetime spectroscopy and molecular dynamics simulations reveal that the excellent barrier properties of 3,6‐CPI are mainly due to the crystallinity and low free volume of the polymer, which result from the rigid planar backbone structure and strong interchain hydrogen bonding. In addition, the polyimide exhibits excellent thermal stability and favorable mechanical properties with a 5 wt% weight‐loss temperature of 559 °C in nitrogen, a glass transition temperature (T g) of 397 °C and a tensile strength of 115.4 MPa . The as‐synthesized polyimide shows potential packaging applications in the field of flexible electronics and displays, flexible and thin film photovoltaics, and light‐emitting diodes. © 2017 Society of Chemical Industry  相似文献   

17.
A series of pyridine‐containing poly(imide‐siloxane) (PIS) copolymers with different amounts of PDMS with various segmental lengths were synthesized from 2,6‐diaminopyridine (DAP), α,ω′‐aminopropylpoly(dimethylsiloxane) (PDMS), 1,3‐bis(4‐aminophenoxy)benzene (APB), and 4,4′‐oxydiphthalic dianhydride (ODPA). A modified synthetic approach was applied instead of approaches commonly reported in the literature, to ensure the incorporation of DAP and PDMS. The effects of the content and the segmental length of PDMS on the thermal glass transition temperature (Tg), dielectric constant, and surface electrical resistivity of the copolymer are investigated. The copolymers were attached to copper foil by hot‐pressing, and changes in wettability caused the peel strength of the laminates to increase with the PDMS content, but to decrease as the DAP content increased. Furthermore, X‐ray photoelectron spectroscopy was employed to determine the loci of failures (LOF) of the laminates and to monitor the movement of LOF, which varies with the PDMS content. For those laminates with good peel strengths, the LOF occur in the interior of PIS layer, indicating that the adhesion is cohesive rather than adhesive. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

18.
Glycerol‐plasticized gelatin (Ge‐30Gly) and poly(lactic acid) (PLA) films were prepared by heat‐compression, molded, and then piled to produce a biodegradable three‐layer sheet with PLA as outer layers and Ge‐30Gly as the inner layer. Lamination with PLA increased the moisture resistance and reduced the total soluble matter with respect to a single gelatin layer, while keeping transparency. The tensile strength of the multilayer sheet (36.24±4.27 MPa) increased 16 folds when compared to that of Ge‐30Gly. Lamination also exerted beneficial effects on the barrier properties. The WVP of the multilayer sheet (1.2 ± 0.1 10?14 kg·m·Pa?1·s?1·m?2) decreased with reference to that of Ge‐30Gly, while oxygen permeability (17.1 ± 2.3 cm3(O2)·mm·m?2·day?1) was reduced with respect to that of neat PLA, and the value obtained was comparable to that of Ge‐30Gly layer. The presence of plasticized gelatin in the multilayer increased the energy at crack initiation (1.4 ± 0.3 J·m?1) with respect to that of PLA. The improvement attained in all these properties was ascribed to the good compatibility and adhesion of the individual layers featured through hydrogen interactions between the carbonyl group from PLA and the hydrogen from the peptide bonds in gelatin. Compatibility was corroborated by scanning electron microscopy observations at PLA/Ge‐30Gly interface and by the absence of additional peaks in the tan δ curve of dynamic‐mechanical analysis. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

19.
The development of wet bioadhesives for tissue fixation and wound care remains a challenge. While various commercial bioadhesive products based on both natural and synthetic materials are available, both types of adhesive have several drawbacks including weak adhesion or toxicity. In this study, we present a novel mussel‐inspired synthetic adhesive based on polyaspartamide derivatives modified with dopamine and a series of hydrophobic n‐alkylamines (lauryl, octyl, hexyl and butyl), which shows very strong adhesion toward various types of substrates such as paper, glass and metals as well as several common plastics (0.1–0.6 MPa). Additionally, the effect of adding metal ions (Mg2+, Ca2+) as a coordination crosslinker to enhance adhesion performance was investigated using acryl plastic substrate. Even under deionized water conditions, the strong adhesion was found to be maintained for an appreciably long time after 24 h. This novel and biocompatible polymer glue system has potential in various applications including as a medical tissue adhesive and sealant. © 2018 Society of Chemical Industry  相似文献   

20.
Oligo(isosorbide adipate) (OSA), oligo(isosorbide suberate) (OSS), and isosorbide dihexanoate (SDH) were synthesized and evaluated as renewable resource alternatives to traditional phthalate plasticizers. The structure of the synthesized oligomers was confirmed by nuclear magnetic resonance spectroscopy (1H‐ and 13C‐NMR), and molecular weight was determined by size exclusion chromatograph. The plasticizers were blended with poly(vinyl chloride) (PVC), and the miscibility and properties of the blends were evaluated by differential scanning calorimetry, fourier transform infrared spectroscopy, tensile testing, and thermogravimetry. Especially the blends plasticized with SDH had almost identical properties with PVC/diisooctyl phthalate (DIOP) blends. The blends containing OSA and OSS plasticizers, based on dicarboxylic acids, had somewhat lower strain at break but higher stress at break and better thermal stability compared to the PVC/DIOP or PVC/SDH blends. All the synthesized isosorbide plasticizers showed potential as alternative PVC plasticizers. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号