首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This article investigates the mechanical, morphological, and thermal properties of poly(vinyl chloride) (PVC) and low‐density polyethylene (LDPE) blends, at three different concentrations: 20, 50, and 80 wt% of LDPE. Besides, composite samples that were prepared from PVC/LDPE blend reinforced with different date palm leaf fiber (DPLF) content, 10, 20, and 30 wt%, were also studied. The sample in which PVC/LDPE (20 wt%/80 wt%) had the greatest tensile strength, elongation at break, and modulus. The good thermal stability of this sample can be seen that T10% and T20% occurred at higher temperatures compared to others blends. DPLF slightly improved the tensile strength of the polymer blend matrix at 10 wt% (C10). The modulus of the composites increased significantly with increasing filler content. Ageing conditions at 80°C for 168 h slightly improved the mechanical properties of composites. Scanning electron microscopic micrographs showed that morphological properties of tensile fracture surface are in accordance with the tensile properties of these blends and composites. Thermogravimetric analysis and derivative thermogravimetry show that the thermal degradation of PVC/LDPE (20 wt%/80 wt%) blend and PVC/LDPE/DPLF (10 and 30 wt%) composites took place in two steps: in the first step, the blend was more stable than the composites. In the second step, the composites showed a slightly better stability than the PVC/LDPE (20 wt%/80 wt%) blend. Based on the above investigation, these new green composites (PVC/LDPE/DPLF) can be used in several applications. J. VINYL ADDIT. TECHNOL., 25:E88–E93, 2019. © 2018 Society of Plastics Engineers  相似文献   

2.
The article presents the results of experimental investigation on three‐body abrasive wear behavior of nanoclay‐filled EVA/LDPE (NC‐EVA/LDPE) composites. NC‐EVA/LDPE composites with and without compatibilizer were prepared by Brabender Co‐Twin extruder (Make: CMEI, Model: 16CME, SPL) and poly(ethylene‐co‐glycidyl methacrylate) was used as the compatibilizer. The mechanical properties were evaluated using Universal testing machine. In three‐body wear tests, silica sand particles of size 200–250 μm were used as dry and loose abrasives. Three‐body abrasive wear studies were carried out using dry sand/rubber wheel abrasion test rig. The effect of abrading distance on the abrasive wear behavior of neat EVA, EVA/LDPE, and NC‐EVA/LDPE composites was reported. The results showed that the wear volume loss is increased with increase in abrading distance and the specific wear rate decreased with increase in abrading distance. However, the presence of nanoclay filler in EVA/LDPE composite showed a promising trend. Abrasive wear volume of the composites was correlated with mechanical properties such as hardness, tensile strength, and percentage elongation. However, higher weight percentage of LDPE in EVA increased the wear rate. The results indicate that NC‐EVA/LDPE with compatibilizer composite exhibits good abrasive wear resistance compared with NC‐EVA/LDPE without compatibilizer. Attempts to explain these differing trends are made in this work by analyzing the features observed on the worn surface samples by employing scanning electron microscopy (SEM). POLYM. COMPOS., 2010. © 2009 Society of Plastics Engineers  相似文献   

3.
The nanocomposites of low‐density polyethylene contain graphene (LDPE/Gr) and low‐density polyethylene contains carbon‐nanotubes (LDPE/CNTs) with different Gr loadings (0.5, 1, and 3 wt%) were formulated with a melt‐mixing method. The distribution of Grs in LDPE was detected by scanning electron microscopy. In this study, morphological, electrical, thermal, tensile, and rheological properties of nanocomposites were comparatively investigated. The outcomes were reviewed and it was recognized that LDPE/Gr nanocomposites reveal superior properties than LDPE/CNTs nanocomposites at the same loadings. The superior performance of LDPE/Gr nanocomposites attributes to the large aspect ratio of Gr and its two dimensional flat surfaces which effect in increasing physical interlinking with LDPE chains and expanded the interface zone at filler–LDPE interface. It was also identified that the achieved results for LDPE/CNT nanocomposites, which has a compact surface area and linkage with LDPE, are less noticeable than similar Gr compounds due to higher interfacial interactions between Gr and LDPE. The thermomechanical results of LDPE/Gr nanocomposites have been studied and the influence of nanoscaled strengthening in the thermoplastic matrix has been investigated. The existence of Gr limits the flexibility of LDPE chains, increases the rigidity and the strength of the LDPE‐nanocomposites. This study compares how a flat or roll structure of carbon nano‐structure additive (Grs vs. CNTs) can change the various properties of LDPE nanocomposites. J. VINYL ADDIT. TECHNOL., 25:35–40, 2019. © 2018 Society of Plastics Engineers  相似文献   

4.
Nylon 12 was successfully synthesized in a twin‐screw extruder via the anionic ring‐opening polymerization of lauryllactam (LL). Maleated low‐density polyethylene (LDPE–MAH) was added to improve the mechanical properties of nylon 12. The in situ blends of nylon 12 and LDPE–MAH were characterized by mechanical testing and scanning electron microscopy. With increasing LDPE–MAH content, the tensile strength and flexural strength decreased, whereas the blend had improved impact strength and achieved supertoughness when the content of LDPE–MAH was 30 wt %. In the in situ formed low‐density polyethylene‐g‐PA12 copolymer, the domain of the LDPE–MAH phase was finely dispersed in the nylon 12 matrix. The good interface between the two phases demonstrated that LDPE–MAH could be used as a macromolecular activator to induce the polymerization of LL. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

5.
This article aimed to investigate the mechanical, morphological and thermal properties of PVC/LDPE blend with and without the addition of compatibilizers. The effects of LDPE content, compatibilizer type and rubber‐wood sawdust loading on the properties of the blend were evaluated. The experimental results suggested that as the LDPE content was increased the mechanical properties of PVC‐LDPE blend progressively decreased due to poor interfacial adhesion. The continuity and compatibility between PVC and LDPE phases could be improved through three different types of compatibilizers which included chlorinated polyethylene (CPE) poly(methyl‐methacrylate‐co‐butyl acrylate) (PA20) and poly(ethylene‐co‐methacrylate) (Elvaloy). The PA20 was found to be the most suitable compatibilizer for the blend. A radical transfer reaction was proposed in this work to explain the structure and thermal changes of the PVC in PVC‐LDPE blend. The decomposition temperature of PVC in the blend decreased with the loading of the PA20 and the wood sawdust. As the sawdust content was increased the tensile and flexural moduli increased with considerable decreased in the tensile, flexural and impact strength, a slight improvement being achieved if the PA20 was incorporated in the composite. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 598–606, 2006  相似文献   

6.
Altering the morphology of polyethylene affects physical and electrical properties with reduced spherulite size correlating with higher electrical breakdown strength. Nucleating agents in polyethylene influence the final crystal morphology by increasing the number of spherulites and reducing spherulite size. Few studies are available that relate the nucleating activity to improved electrical breakdown strength. Although nanosilica is known to improve electrical breakdown strength of polyethylene in addition to serving as a nucleating agent, previous studies have not fully addressed the relationship between the improved breakdown strength and nucleating activity. In this article, direct current electrical breakdown strength and nucleation effects on morphology are assessed on a single set of controlled polyethylene compositions containing two types of surface treated nanosilica particles. The results are compared to composites with two types of organic nucleating agents 1,3:2,4‐bis(3,4‐dimethylbenzylidene) sorbitol or calcium 1,2‐cyclohexanedicarboxylate (CDA). CDA was the most effective organic nucleating agent and the hexamethyldisilizane treated nanosilica was the most effective inorganic nucleating agent in reducing spherulite sizes in low density polyethylene (LDPE). Reduced spherulite sizes in nucleated samples correlated with increased breakdown strength and lower conduction current compared to the neat LDPE. The LDPE sample with CDA also had the highest increase in crystallization temperature indicating stronger nucleating agent performance than the nanosilica and 1,3:2,4‐bis(3,4‐dimethylbenzylidene) sorbitol composite samples. The addition of these inorganic and organic nucleating agents all resulted in improvements in electrical breakdown strength. The results show that nucleation deserves more attention as a potential cause for improved breakdown strength observed with silica and organic nucleating agents. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46325.  相似文献   

7.
With the increasing ratio of waste tire powder (WTP) to low‐density polyethylene (LDPE), the hardness and tensile strength of the WTP/LDPE blends decreased while the elongation at break increased. Five kinds of compatibilizers, such as maleic anhydride‐grafted polyethylene (PE‐g‐MA), maleic anhydride‐grafted ethylene‐octene copolymer (POE‐g‐MA), maleic anhydride‐grafted linear LDPE, maleic anhydride‐grafted ethylene vinyl‐acetate copolymer, and maleic anhydride‐grafted styrene‐ethylene‐butylene‐styrene, were incorporated to prepare WTP/LDPE blends, respectively. PE‐g‐MA and POE‐g‐MA reinforced the tensile stress and toughness of the blends. The toughness value of POE‐g‐MA incorporating blends was the highest, reached to 2032.3 MJ/m3, while that of the control was only 1402.9 MJ/m3. Therefore, POE‐g‐MA was selected as asphalt modifier. The toughness value reached to the highest level when the content of POE‐g‐MA was about 8%. Besides that the softening point of the modified asphalt would be higher than 60°C, whereas the content of WTP/LDPE blend was more than 5%, and the blends were mixed by stirring under the shearing speed of 3000 rpm for 20 min. Especially, when the blend content was 8.5%, the softening point arrived at 82°C, contributing to asphalt strength and elastic properties in a wide range of temperature. In addition, the swelling property of POE‐g‐MA/WTP/LDPE blend was better than that of the other compalibitizers, which indicated that POE‐g‐MA /WTP/LDPE blend was much compatible with asphalt. Also, the excellent compatibility would result in the good mechanical and processing properties of the modified asphalt. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

8.
In this study, the simultaneous effects of both silanized coal fly ash (S‐CFA) and nano/micro glass fiber (nGF) on fracture toughness and mechanical properties of vinyl ester (VE) resin filled with carbon fiber‐based composite materials were investigated. The CFA was treated with (3‐trimethoxysilyl) propyl methacrylate to introduce the methacryloxy groups into the surface of CFA, and was confirmed by using FTIR technique. The nGF and S‐CFA with different weight ratios were well mixed with VE resin by using of high‐speed mechanical stirrer, and ultrasonic technique before using as matrices for fabrication of carbon fiber‐based composite materials via sheet molding compound (SMC) method and hot curing processing. Many characteristics of both cured VE resin composites and carbon fiber‐based composite were examined such as mechanical properties, fracture toughness, and morphology. The results showed that by adding of both 0.1 wt% nGF and 1 wt% S‐CFA into VE resin the tensile strength, tensile modulus, flexural strength, KIC, impact strength as well as the Mode I interlaminar fracture toughness (GIC) of VE composites and carbon fiber based composites get optimum values and increased about 61.39%; 39.83%; 36.21%; 103.1%; 81.79%; 48.61%, respectively when compared with pristine materials. POLYM. ENG. SCI., 59:584–591, 2019. © 2018 Society of Plastics Engineers  相似文献   

9.
Series of low density polyethylene (LDPE) films filled with different fillers such as silica, mica, soya protein isolate, potassium permanganate, and alumina were processed using a single screw extruder. The filled LDPE films were characterized for physicomechanical properties like tensile strength, percentage elongation at break, and tear strength, optical properties like percent transmission and haze. The barrier properties such as water vapor transmission rate and oxygen transmission rate of the filled LDPE films have also been reported. Microcrystalline parameters such as crystal size (〈N〉) and lattice distortion (g) of the filled LDPE films obtained using wide angle X‐Ray scattering method have been reported. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 2781–2789, 2006  相似文献   

10.
The effects of the starch content, photosensitizer content, and compatibilizer on the photobiodegradability of low‐density polyethylene (LDPE) and banana starch polymer blend films were investigated. The compatibilizer and photosensitizer used in the films were PE‐graft‐maleic anhydride (PE‐g‐MA) and benzophenone, respectively. Dried banana starch at 0–20% (w/w) of LDPE, benzophenone at 0–1% (w/w) of LDPE, and PE‐g‐MA at 10% (w/w) of banana starch were added to LDPE. The photodegradation of the blend films was performed with outdoor exposure. The progress of the photodegradation was followed by determining the carbonyl index derived from Fourier transform IR measurements and the changes in tensile properties. Biodegradation of the blend films was investigated by a soil burial test. The biodegradation process was followed by measuring the changes in the physical appearance, weight loss, and tensile properties of the films. The results showed that both photo‐ and biodegradation rates increased with increasing amounts of banana starch, whereas the tensile properties of the films decreased. The blends with higher amounts of benzophenone showed higher rates of photodegradation, although their biodegradation rates were reduced with an increase in benzophenone content. The addition of PE‐g‐MA into polymer blends led to an increase in the tensile properties whereas the photobiodegradation was slightly decreased compared to the films without PE‐g‐MA. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 2725–2736, 2006  相似文献   

11.
Modification of low‐density polyethylene (LDPE) hyperbranched grafting with a maleic anhydride (MAH) was carried out using corotating twin screw extruder in the presence of benzoyl peroxide. The LDPE/polyamide 6 (PA6) and LDPE‐g‐MAH/PA6 blends were obtained with a corotating twin screw extruder. The melt viscosity of the grafted LDPE was measured by a capillary rheometer. The grafted copolymer was characterized by Fourier transform infrared spectroscopy and scanning electron microscopy The effects of variations in temperature, PA6 loading, and benzoyl peroxide and MAH concentration were investigated. The results show that most MAH monomers were grafted onto the LDPE at a lower MAH concentration. With the proper selection of the reaction parameters, we obtained a grafting degree higher than 4.9%. Mechanical test results indicate that the blends had good interfacial adhesion and good stability of the phase structure during heating, which was reflected in the mechanical properties. Furthermore, the results reveal that the tensile strength of the blends increased continuously with increasing PA6 content. Moreover, the home‐synthesized maleated LDPE could be used for the compatibilization of LDPE/PA 6 blends. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

12.
Rubberwood flour and cellulose have been plasticized by cyanoethylation and then blended with low‐density polyethylene (LDPE). A small quantity of epoxy functionalized polyethylene i.e., polyethylene‐co‐glycidyl methacrylate (PEGMA) has been added to further enhance the mechanical properties. The mechanical properties were measured according to the standard ASTM methods. SEM analysis was performed for both fractured and unfractured blend specimens. The mechanical properties were improved by the addition of PEGMA compatibilizer. LDPE blends with cyanoethylated wood flour (CYWF) showed higher tensile strength and modulus than cyanoethylated cellulose CYC‐LDPE blends. However CYC‐LDPE blends exhibited higher relative elongation at break values as compared with the former. The TGA analysis showed lowering of thermal stability as the filler content is increased and degradation temperature of LDPE is shifted slightly to lower temperature. DSC analysis showed loss of crystallinity for the LDPE phase as the filler content is increased for both types of blends. Dielectric properties of the blends were similar to LDPE, but were lowered on adding PEGMA. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 219–237, 2006  相似文献   

13.
The effects of glycerol and polyethylene‐grafted maleic anhydride (PE‐g‐MA) on the morphology, thermal properties, and tensile properties of low‐density polyethylene (LDPE) and rice starch blends were studied by scanning electron microscopy (SEM), differential scanning calorimetry, and the Instron Universal Testing Machine, respectively. Blends of LDPE/rice starch, LDPE/rice starch/glycerol, and LDPE/rice starch/glycerol/PE‐g‐MA with different starch contents were prepared by using a laboratory scale twin‐screw extruder. The distribution of rice starch in LDPE matrix became homogenous after the addition of glycerol. The interfacial adhesion between rice starch and LDPE was improved by the addition of PE‐g‐MA as demonstrated by SEM. The crystallization temperatures of LDPE/rice starch/glycerol blends and LDPE/rice starch/glycerol/PE‐g‐MA blends were similar to that of pure LDPE but higher than that of LDPE/rice starch blends. Both the tensile strength and the elongation at break followed the order of rice starch/LDPE/glycerol/PE‐g‐MA blends > rice starch/LDPE/glycerol > LDPE/rice starch blends. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 344–350, 2004  相似文献   

14.
Palm kernel shell (PKS), a waste from the oil palm industry, has been utilized as filler in low‐density polyethylene (LDPE) eco‐composites in the present work. The effect of PKS content and coconut oil coupling agent (COCA) on tensile properties, water absorption, and morphological and thermal properties of LDPE/PKS eco‐composites was investigated. The results show the increase of PKS content decreased the tensile strength and elongation at break, but increased the tensile modulus, crystallinity, and water absorption of eco‐composites. The presence of COCA as coupling agent improved the filler‐matrix adhesion yield to increase the tensile strength, tensile modulus, crystallinity, and reduced water absorption of eco‐composites. The better interfacial adhesion between PKS and LDPE with the addition of COCA was also evidenced by scanning electron microscopy studies. J. VINYL ADDIT. TECHNOL., 22:200–205, 2016. © 2014 Society of Plastics Engineers  相似文献   

15.
In this study, we prepared short‐carbon‐fiber (CF)‐reinforced poly(lactic acid) (PLA)–thermoplastic polyurethane (TPU) blends by melt blending. The effects of the initial fiber length and content on the morphologies and thermal, rheological, and mechanical properties of the composites were systematically investigated. We found that the mechanical properties of the composites were almost unaffected by the fiber initial length. However, with increasing fiber content, the stiffness and toughness values of the blends were both enhanced because of the formation of a TPU‐mediated CF network. With the incorporation of 20 wt % CFs into the PLA–TPU blends, the tensile strength was increased by 70.7%, the flexural modulus was increased by 184%, and the impact strength was increased by 50.4%. Compared with that of the neat PLA, the impact strength of the CF‐reinforced composites increased up to 1.92 times. For the performance in three‐dimensional printing, excellent mechanical properties and a good‐quality appearance were simultaneously obtained when we printed the composites with a thin layer thickness. Our results provide insight into the relationship among the CFs, phase structure, and performance, as we achieved a good stiffness–toughness balance in the PLA–TPU–CF ternary composites. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46483.  相似文献   

16.
Calcium carbonate (CaCO3)‐filled low‐density polyethylene (LDPE)/linear low‐density polyethylene (LLDPE) composites were fabricated by means of a twin‐screw extruder, and the tensile mechanical properties of the tubing with thickness of 0.5 mm made from these composites were measured at room temperature to identify the effect of the filler concentration on the properties of these composites. The results showed that the tensile elastic modulus increased roughly linearly with increasing weight fraction (?f) of the fillers. The tensile fracture strength (σb) along longitudinal direction was obviously higher than that along transverse direction under the same test conditions, especially at higher filler concentration. The values of σb of the specimens along both the two directions achieved minimum at ?f = 20%. Furthermore, the melt flow rate (MFR) and heat enthalpy (ΔH) of the composite materials were measured. It was found that both the MFR and the ΔH decreased with the addition of ?f. The ΔH for the composite with LDPE/LLDPE ratio of 70/30 was higher than that of the composite with LDPE/LLDPE ratio of 50/50 at the same filler concentration, but contrary to the MFR. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 1692–1696, 2007  相似文献   

17.
Melt mixing in an extruder with polymers is an effective approach for forming nanocomposites, allowing mass production applications. The intent of this study is to investigate carbon nanofiber composites with ultrahigh molecular weight polyethylene (UHMWPE) matrix using the twin‐screw extruder. To decrease the high viscosity of UHMWPE, a low density polyethylene (LDPE) was added into the UHMWPE. The effects of carbon nanofibers (CNFs) on the crystalline structures and properties of the nanocomposites were analyzed. The differential scanning calorimetry (DSC) and X‐ray diffraction (XRD) measurements showed the addition of CNFs decreases the degree of crystallinity, but does not impart significant effects on the crystalline structure of the UHMWPE/LDPE blend. Tensile test results showed that the nanocomposite with loading of 3 wt % CNFs had an increase of 38% in tensile strength and 15% in modulus. The thermal stability and thermal conductivity of UHMWPE/LDPE blends were also enhanced by the addition of CNFs. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

18.
This article reports, for the first time, on how the kinetics and thermodynamics of the melt‐processing control the nano/micro‐structure development and properties of nanoclay‐filled polypropylene (PP)/low‐density polyethylene (LDPE) blend ternary composites. Morphological characterization suggests that the nano/micro‐structure of the PP/LDPE (80/20) blend can be controlled by incorporating nanoclay alone or by adding a mixture of organoclay and maleated compatibilizers. Simultaneous mixing of PP, LDPE, maleated compatibilizers, and organoclay results in homogeneous distribution of intercalated silicate layers in all the phases of the blend, a feature which profoundly affects the thermal stability and tensile and rheological properties of the blend composites. For example, the elongation‐at‐break for PP increases from 28.1 to 155.6% for composite containing both organoclay and maleated compatibilizers, whereas the thermal stability for PP increases from 269.8 to 303.3 °C for the same composite. However, the impact strength of the PP/LDPE blend decreases with incorporation of organoclay, regardless of the phase in which the nanoclay particles are localized. In summary, the obtained results show that regardless of the phase in which the nanoclay is localized, the morphology, and hence the properties, of the ternary composites are superior to those of the neat blend. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46193.  相似文献   

19.
Crosslinking of homemade low‐density polyethylene (LDPE) was performed by electron‐beam (EB) irradiation. The gel content of the EB‐exposed LDPE was determined by the solvent‐extraction method. The degree of crosslinking was also evaluated by a hot set measuring test. The results obtained from both the gel–sol and the hot set methods showed that the degree of crosslinking was dependent on the deposited energy in LDPE samples. Increasing the absorbed dose increased the degree of network formation. The LDPE with higher molecular weight yielded higher efficiency of crosslinking at the same irradiation dose. The effect of irradiation dose on the molecular weight between crosslinks (Mc), glass‐transition temperature, and free volume were calculated. Mechanical test results showed that the tensile strength of the samples increased with increase in the irradiation dose up to 150 kGy and then slightly decreased with further increasing the deposited energy. The elongation at break decreased with increasing the absorbed dose. The results obtained from differential scanning calorimetry exhibited a small reduction in the melting point and the degree of crystallinity of the EB‐exposed LDPE samples compared to those of the untreated samples. The effect of crosslinking on the electrical properties of the irradiated samples was insignificant. The dielectric constant of the treated samples remained nearly constant within the irradiation dose range, although the dissipation factor increased slightly with increasing the absorbed dose. The results obtained from characterizing the EB‐induced crosslinking of homemade polyethylene, including LH0030 and LH0075, showed the higher molecular weight polyethylene (LH0030) as a preferred option for wire and cable insulation. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 1959–1969, 2002  相似文献   

20.
It remains a problem to prepare cost‐effective aramid with good solubility via a simple method since the commercialization of aromatic polyamides such as Kevlar and Nomex by DuPont in 1960s. Herein, we report the facile preparation and properties of an aromatic polyamide copolymerized by 2,6‐naphthalene dichloride (26N‐COCl), 4,4′‐oxydianiline, and m‐phenylenediamine. The synthetic route is very facile and cost‐effective. The modified aramids possess excellent comprehensive properties. The polymers are soluble in some organics. Their thermal stabilities are excellent, with 5% weight loss temperatures (Td,5%'s) in air higher than 460 °C and glass transition temperatures (Tg's) higher than 280 °C. These polymers are easily processed into films, fibers, and tubes. The products exhibit high strength. For example, the films have excellent mechanical strength, with a tensile strength up to 139 MPa, a tensile modulus up to 3.45 GPa, and an elongation of 11%. The films are also transparent and fluorescent. The overall properties are better than those of the commercial Nomex. The facilely prepared aramids with good solubility are very promising for commercial use. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46341.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号