首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Scintillating tiles for the Tilecal/Atlas calorimeter can be produced by injection molding, an alternative to mold casting via in situ polymerization. This new production method, which leads to a much faster production rate, introduces a number of additional variables that affect the optical yield of the scintillators and that have not yet been reported in the literature. In this work, the effect of processing‐induced orientation on the optical properties of the scintillators is analyzed and discussed. For this purpose, the birefringence across the thickness of the scintillator has been measured. The variations of the birefringence may be correlated with the orientation and, therefore, related to the optical performance, that is, the average light output and its nonuniformity. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 2706–2713, 2003  相似文献   

2.
Polyamide 6 (PA6)/polystyrene (PS) blends with an average particle size of 103 nm were prepared by diffusion and subsequent polymerization of styrene in water‐sorbed PA6 pellets. The pretreatment of PA6 pellets in hot water is prerequisite for successful styrene diffusion. The diffusion process involves replacement of free water in the pellets by styrene, and should be carried out in neat styrene medium to provide concentration gradient between inside and outside of the pellets. The polymerization step was carried out in water medium with benzoic peroxide as the initiator. The diametrical distribution of PS in the blend pellets was investigated by Micro‐FTIR, and molecular weight of PS was measured by GPC. DSC measurements showed that the diffusion and polymerization of styrene occur in the amorphous regions of PA6 where the pre‐sorbed water locates. PA6/PS quasi‐nanoblends reported in this work cannot be obtained by conventional methods. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44554.  相似文献   

3.
The microhardness of injection‐molded potato starch was investigated in relation to the water sorption mechanism. The creep behavior under the indenter and the temperature dependence of the microhardness are reported. The influence of the drying time on microhardness, weight loss and density changes for materials with different injection‐molding temperatures is highlighted. Results reveal the role of the various mechanisms of water evaporation involved. The occurring structural mechanisms are discussed in terms of the gradual transformation of single helices of amylose and amylopectin into a network structure of double helices and the partial destruction of this structure. Experiments on starch samples, heated at 200°C, suggested the occurrence of an extreme densification of the network hindering the water adsorption in a humid atmosphere. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 1246–1252, 2002  相似文献   

4.
The microhardness (H) technique is used to characterize the quality of the weld line in injection‐molded glassy polystyrene by means of a cylindrical obstacle. In particular, the effect of the indentation location (closer or further from the obstacle edge parallel to the injection direction and across the weld line), both on the surface and in the bulk, was examined. Only for surface measurements close to the obstacle (up to 10 mm) a well‐pronounced decrease in H (~30%), followed by a sharp increase in a narrow distance (0.20–0.25 mm), was observed. For the bulk measurements on the same location a slight decrease in H was detected. Additional H measurements made up to 60 mm from the obstacle for both cases showed that the weld line remains undetectable. The results obtained reveal that the presence of a cylindrical obstacle causes the formation of a weld line on and near the surface only at distances not exceeding the obstacle diameter. At larger distances, because of the effective mutual interdiffusion of polymer chains, the two parallel fronts coming from the two sides of the obstacle developed a homogeneous material without any weld line according to the microhardness test. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 3362–3367, 2004  相似文献   

5.
Polystyrene (PS)/polyamide 1212 (PA 1212) blends were compatibilized with a maleated triblock copolymer of styrene–(ethylene‐co‐butene)–styrene (SEBS‐g‐MA). Scanning electron microscopy revealed that the addition of SEBS‐g‐MA was beneficial to the dispersion of PA 1212 in the PS matrix because of the reaction between them. The variation of the fraction of SEBS‐g‐MA in the blends allowed the manipulation of the phase structure, which first formed a sheetlike structure and then formed a cocontinuous phase containing PA 1212/SEBS‐g‐MA core–shell morphologies. As a result, the mechanical properties, especially the Charpy notched impact resistance, were significantly improved with the addition of SEBS‐g‐MA. Differential scanning calorimetry (DSC) data indicated that the strong interaction between SEBS‐g‐MA and PA 1212 in the blends retarded the crystallization of PA 1212. The heat distortion temperature of the compatibilized blends was improved in comparison with that of the unmodified blend, probably because of the apparent increase in the glass‐transition temperature with an increasing concentration of SEBS‐g‐MA. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 95: 1354–1360, 2005  相似文献   

6.
Moisture diffusion in polyamide 6,6 (PA66) and its short glass fiber‐reinforced composites has a great influence on their mechanical properties and service lives under hydrothermal environments. Hence, the moisture diffusion in neat PA66 and its composites was studied comprehensively in this study with the general Fickian model. To systematically investigate the effects of the fiber content, humidity, temperature, and humidity–temperature coupling effect on the diffusion coefficient and equilibrium concentration, gravimetric experiments for the PA66 composites were carried out under different hydrothermal conditions. The results show that the equilibrium moisture concentration depended on the relative humidity and fiber content but only depended weakly on temperature. The diffusion velocity was affected by the three aforementioned factors with different trends. The analysis of variance demonstrated that the humidity–temperature coupling effect played an important role in the diffusion process. The regression analysis gave the corresponding quadratic regression equations. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42369.  相似文献   

7.
In this study, the surface grafting of poly(ethylene glycol) (PEG) onto commercial polyamide thin film composite (TFC‐PA) membranes was carried out, using ultraviolet photo‐induced graft polymerization method. The attenuated total reflection Fourier transform infrared spectra verify a successful grafting of PEG onto the TFC‐PA membrane surface. The scanning electron microscope and atomic force microscope analyses demonstrate the changes of the membrane surface morphology due to the formation of the PEG‐grafted layer on the top. The contact angle measurements illustrate the increased hydrophilicity of the TFC‐PA‐g‐PEG membrane surfaces, with a significantly reduced water contact angles compared to the unmodified one. Consequently, the separation performance of the PEG‐grafted membranes is highly improved, with a significant enhancement of flux at a great retention for removal of the different objects in aqueous feed solutions. In addition, the antifouling property of the modified membranes is also clearly improved, with the higher maintained flux ratios and the lower irreversible fouling factors compared to the unmodified membrane. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45454.  相似文献   

8.
The distribution of fluorescing dye solutes in scintillating tiles for the Tilecal/Atlas project is assessed, and a link between the homogeneity of the dopant distribution and the optical yield and nonuniformity is established. The effect of the injection‐molding parameters on the dye distribution is also analyzed, as well as the actual dye incorporation into the scintillators. This incorporation has been assessed with a set of experiments performed with laboratory samples with controlled amounts of additives and with samples obtained from injection‐molded scintillators. Differential scanning calorimetry has been used to characterize the raw material and to establish a link between the thermophysical properties and the processing conditions, and it is proven to be a quite appropriate technique. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 2714–2718, 2003  相似文献   

9.
In this article, we studied the cell forming process of microcellular injection‐molded parts. Using a modified injection molding machine equipped with a Mucell® SCF delivery system, microcellular‐foamed acrylonitrile–butadiene–styrene parts with different shot sizes were molded. The cell structure on the fractured surfaces along the direction both vertical and parallel to melt flow in the molded parts was examined. The results showed that a regular spherical cells region and a distorted ellipsoidal cells region exist in the molded parts simultaneously. The length of the distorted cells region along the melt flow direction in the molded parts remained basically unchanged for different shot sizes and it is about 195 mm away from the flow front in this study's conditions. The cell formation mechanism was analyzed, two cell forming processes in microcellular injection molding, the “foam during filling” process and the “foam after filling” process, were proposed. It was also found that the melt pressure in the filling stage is the dominant factor affecting the cell forming process, and there is a critical melt pressure value in the filling stage, 20.9 MPa, as the dividing line of the two cell forming processes in this study. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40365.  相似文献   

10.
Gas channel design plays a dominant role in determining the successful application of gas‐assisted injection molding. Although empirical guidelines for gas channel design have been proposed by the various equipment suppliers, quantitative criteria based on well‐designed experiments have not been reported yet. In this study, transparent polystyrene plates designed with semicircular gas channels of different radii and with rectangular gas channels of different width‐to‐height ratios were gas‐assisted‐injection‐molded to investigate the geometrical effects on gas penetration with various plate thicknesses. Plate parts designed with gas channels having four different types of cross sections but with the same section area were also examined. Molding windows and criteria for gas penetration were properly chosen so that the design rule could be defined quantitatively. The moldability index was also classified into five levels (excellent, good, fair, poor, and bad) based on the relative areas of the molding windows. From a plot of the moldability index versus the ratio of the equivalent gas channel radius to the plate thickness, we found that the ratio should be approximately greater than 2 for an appropriate molding window (fair moldability index) to be obtained. The dimensional ratio of the width to the height for rectangular gas channels also affected the moldability index under the same equivalent radius. Meanwhile, for four gas channel designs, both gas channel designs attached to the top rib provided better moldability than the other designs. This investigation offers part designers preliminary quantitative design and molding guidelines for choosing an effective gas channel design that allows the parts to be molded under an appropriate molding window so that the uncertainty in both simulation and process control can be overcame. Furthermore, this study provides a methodology for the establishment of quantitative gas channel design guidelines. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 2979–2986, 2003  相似文献   

11.
Polyamide 6 (PA 6)/poly(hydroxyether of bisphenol A) (phenoxy) blends were obtained by direct injection molding over the whole composition range. Differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMTA), and scanning electron microscopy (SEM) showed the almost full immiscibility of the blends and the lack of effect of phenoxy on the crystalline phase of PA 6. The rodlike and fine‐dispersed phase of the tensile specimens was strongly deformed during tensile testing, giving characteristic fibrilar structures. The Young's modulus and yield stress showed small deviations from additivity that appeared related mainly to the blending‐induced free‐volume change. Despite immiscibility, the ductility behavior was also additive, probably due to the fibrilar morphology. However, the thicker impact specimens gave rise to less oriented larger dispersed phases and to full plane strain conditions that, in opposition to ductility, yielded impact strength values well below linearity. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 1113–1124, 1999  相似文献   

12.
The melting and crystallization behaviors of the skin layer in an injection‐molded isotactic polypropylene (PP) have been studied, mainly in comparison with those of the core layer and subsidiarily in comparison with those of a compression‐molded PP and a nucleator (talc)–added PP. The skin layer contains about 5% crystals, which have a high melting point of up to 184°C. They thermally vanish by melting once. The subsequent melting history will scarcely affect the melting behaviors. On the other hand, crystallization behaviors are strongly affected by the melting history. The skin layer crystallizes in a wide temperature range at high temperature. This tendency weakens with increasing melting temperature, approaching a constant and that of the core layer above 230°C, which suggests that the memory effect of the residual structure of PP vanishes by melting above 230°C. In explaining these experimental results, it is assumed that the residual structure substance is a melt orientation of molecular chains that works as crystallization nuclei and that the vanishing of the residual structure is nothing but a relaxation of the melt orientation. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 1751–1762, 2000  相似文献   

13.
Polystyrene (PS) possesses good mechanical properties, but its surface is relatively inert and hydrophobic. Grafting of N‐vinylcarboxamido‐2‐methylpropane sulfonic acid (VCMP) is useful to hydrophilize the PS surface. Grafting was performed using benzoyl peroxide (BPO) as an initiator in toluene:methanol solvent mixture (3:1 volume ratio). The influence of the main factors on grafting, such as temperature, time, concentrations of initiator, PS and VCMP, has been studied. The results show that the initial rate of polymerization and percentage of grafting are enhanced by increased temperature. Furthermore, the specific rate constants of the first order reaction/are determined, and the activation energy of the grafting reaction is estimated. The grafting parameters are established and a suitable mechanism of the reaction is proposed. The grafted PS is to characterized through infrared spectra, intrinsic viscosity, thermogravimetric analysis (TGA) and differential gravimetric analysis (DTG). The kinetics of thermal degradation and the order of the thermal stabilities are given. Also the decomposition activation energies of the thermal degradation are determined, and confirm the thermal stabilities of the polymers used. © 2004 Society of Chemical Industry  相似文献   

14.
A biodegradable polyester, poly(tetramethylene dodecanedioate), was injection molded in a rectangular cavity. Thin sections were sliced from molded samples starting from the skin. The morphology distribution inside the molded samples was studied by X‐ray analysis. The diffusion and solubility coefficient of water vapor were then measured using the microgravimetric method at the temperature of 30°C. Results show that morphology developed during the process influences the diffusion of water molecules through the polymer matrix. In particular, a direct influence of crystalline degree on the sorption and diffusion parameters was identified. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

15.
Starch nanocrystals‐g‐polystyrene (StN‐g‐PS) was synthesized by free radical emulsion copolymerization of starch nanocrystals with styrene. The effect of polymerization conditions on grafting efficiency (GE) and grafting ratio (GR) were investigated. It was found that during graft copolymerization procedure both GE and GR increase with increasing monomer concentration and reaction time. As a result the high GE and high GR can be achieved. The good linear fit of the GR with ASt/AOH (the absorption strength ratio of aromatic ring peaks and hydroxyl group peaks) confirmed that during graft copolymerization, FTIR spectra can be used as a simple method for determining GR. X‐ray diffraction showed that the crystallinity of StN‐g‐PS decreased slightly with increasing GR. Grafted polystyrene side chains can improve the interface compatibility of starch nanocrystals with the hydrophobic polymer matrix. The mechanical properties of StN‐g‐PS/rubber nanocomposites can be obviously enhanced. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40571.  相似文献   

16.
Plasma pretreatment has been used to generate reactive radicals and oxygenated groups on polymer surfaces for graft polymerization. The polymer substrates studied were composed of a polypropylene–polyethylene (PP–PE) copolymer, which was predominantly PP, and also contained blended ethylene–propylene rubber (EPR) as either about 15 or about 60 mol %. A pure PP substrate was also studied for comparison. The grafted polymer was polystyrene (PS). Raman microspectroscopic 2‐dimensional mapping was used to elucidate the role of crystallinity and EPR in the plasma treatment and graft polymerization process. It was found that the plasma pretreatment favored the EPR component of the substrate and the graft yield was related to the EPR content. Crystallinity seemed to have a much less significant effect on the grafting reaction. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 1643–1652, 2003  相似文献   

17.
The durability of polylactide (PLA) blended with polycarbonate (PC) was assessed by exposure to conditions of elevated temperature and humidity over a period of several weeks. Mechanical performance, moisture absorption, chemical composition, and thermal properties were monitored as a function of continuous conditioning at 70°C and 90% relative humidity (RH). All PLA and PC/PLA blends showed significant moisture absorption and hydrolysis, resulting in degradation of properties. Furthermore, while the addition of PC was intended to improve the durability of the blend over neat PLA, it was found that the hydrolysis products of PLA accelerated the degradation of PC itself. This study shows for the first time the hydrolysis behavior of PC/PLA blends in an increasingly acid environment during heat and humidity conditioning. These injection‐molding grades of PLA‐based resins are currently not suitable for use in applications that require long‐term durability in environments subject to elevated temperature and humidity, such as automotive interiors. Further material formulation work is required before use in injection‐molded applications for automotive. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

18.
It is feasible to control the phase morphology and orientation for immiscible polymer blends to manipulate their properties. In this paper, the blend of polyamide 1010 (PA1010) and isotactic polypropylene (iPP) (mainly at a fixed ratio of PA1010/iPP = 80/20) was used as an example to demonstrate the effect of shear on the morphology and resultant mechanical properties. After being melt blended, the injection‐molded bars were prepared via a dynamic packing equipment to impose a prolonged shearing on the melts during the solidification stage. By controlling the shear time, the structure evolution and morphological development of the blends can be well controlled. Mechanical measurement of the molded bar showed a dramatically improved tensile property and impact strength with increasing shear time. Morphological examination revealed that the iPP droplets are elongated and become thin fibrils along the shear direction with increasing shear time. The shear‐induced fibrillation, instead of orientation, is believed to be responsible for the largely improved properties of the blend, particularly for the impact strength. The toughening mechanism is discussed based on the combined effect of hindrance of crack propagation and the transferring and bearing of the load due to the existence of the fibrils. This was further proved by changing the blending ratio and using low molecular weight iPP. Finally, we propose a concept for designing blending materials with good comprehensive properties. Copyright © 2011 Society of Chemical Industry  相似文献   

19.
The hygrothermal aging of short glass fiber reinforced polyamide 6 materials (PA6/GF) is a major problem for thin‐walled components used in the automotive sector. In this work, the thickness and glass fiber content of PA6/GF materials were varied and exposed to hygrothermal aging. The temperature and relative humidity were chosen to range from ?40 to 85°C and 10% RH to 85% RH respectively, according to automotive requirements for components in the passenger compartment. For the absorption of moisture, the diffusion behavior could not be generally described by Fick's law. However, the results indicate that the diffusion behavior is dependent on the relative humidity and thickness of the PA6/GF material. The morphology of the test specimen, which is influenced by injection molding, was also found to affect the diffusion behavior. The states of equilibrium for moisture absorption are strongly dependent on the relative humidity during hygrothermal aging and less dependent on the temperature. The maximum absorbed humidity was found at a temperature of 65°C and 85% RH, which was higher than at 85°C and 85% RH because of reduced contrary aging processes, such as postcrystallization. In certain climatic conditions and test specimen thicknesses, there was a characteristic overshoot in the mass change. This behavior could be attributed to a different degree of crystallization and lower glass fiber content. Both moisture absorption and an overshoot of the mass affected the dimensional stability of the test specimens. This effect on dimensional stability could be correlated with the glass fiber orientation. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42245.  相似文献   

20.
A new type of biodegradable starch‐based composites was prepared by injection‐molding using glycerol and water as plasticizers. Chitin flakes, obtained from shells of Penaeusschmitti, were used as reinforcing phase. The effect of chitin content on the structural and tensile properties of the composite samples was examined after conditioning at 28°C and 80% relative humidity for 30 days. In general, chitin incorporation into the starch matrix resulted in materials with higher modulus and decreased elongation at break. Wide‐angle X‐ray diffraction and differential scanning calorimetry evidenced a significant decrease in crystallinity in the composite samples in relation to the unfilled starch material. Contact angle measurements revealed that the addition of chitin contributes to the improvement of water resistance of the composite samples when compared to injection molded starch alone. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2706–2713, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号