首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thin flexible double‐layer microwave absorbers have been fabricated based on polypyrrole (PP)/natural rubber (NR) nanocomposites and their reflection loss characteristics were studied in the range of 8–18 GHz. The PP‐NR matrix was prepared from PP and NR in the ratio of 15:85. The polymers used in this work not only serve as the matrix but also improve the microwave absorption properties. The first layer or impedance matching layer which is comprised of graphite, Fe3O4, and TiO2 nanoparticles in PP‐NR transmits the electromagnetic (EM) wave without reflection. The second layer which is made up of PP‐NR filled with Fe3O4 disperses the EM wave energy. The design of a double‐layer nanocomposite is a method to match the wave impedance, enhance wave absorption ability, and broaden the absorption frequencies. In order to achieve high absorption properties, the EM parameters such as permittivity, permeability, and thickness were controlled precisely according to quarter‐wave plate. The morphology, absorption properties, scattering parameters, thermal and wetting characteristics of double‐layer nanocomposites were investigated. The minimum reflection loss (RL) was ?32 dB at 12.1 GHz and the absorbing bandwidth in which the RL < ?10 dB was 9 GHz for optimum specimen with 2 mm thickness. For this specimen, the contact angle was equal to 118.7° with water as the liquid. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46565.  相似文献   

2.
The objective of this work is to improve the properties of natural rubber composites (NRC) that were frequently used in medical and health supplies, using nanosilver additions. Silver nanocolloids were biosynthesized with an aqueous medium of aloe leaf extract (ALE) as capping agent, and then were filled in natural rubber matrix to prepare nanosilver‐based NRC. UV–vis spectrophotometer, X‐ray diffraction, and transmission electron microscopic analyses proved that the particle size of resultant silver was about 20 nm. The antibacterial activities against Staphylococcus aureus and Escherichia coli bacteria of NRC were dependable on the silver nanoparticles content and the treating methods on ALE, which was used in synthesizing silver nanocolloids. The morphology and thermal stability effect of nanosilver on NRC were determined with scanning electron microscopic and thermogravimetric analysis, respectively. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40746.  相似文献   

3.
A novel sol‐gel‐based hybrid material has been synthesized from organofunctional silanes and aluminates via hydrolysis and condensation reactions. The hybrid material was—in comparison to a silicone rubber—filled with equal amounts of metal filler particles in order to investigate the effective thermal conductivity. The data obtained were compared with theoretical models available in literature to gain understanding of mechanisms responsible for the measured conductivities. Samples were prepared via casting and spin‐coating techniques on Teflon® and silicon substrates and characterized using laser flash analysis (LFA) and scanning electron microscopy (SEM). It was demonstrated, that the hybrid material with an aluminum content of 40 vol % offers the possibility to achieve an up to five times higher thermal conductivity than filled silicone references. The influence of thermal transition between matrix material and filler was evaluated by a sandwich‐layer setup. The results suggest that increased thermal conductivity is also caused by the lower thermal resistance and improved interphase connections within the hybrid material. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41037.  相似文献   

4.
Innovative epoxy‐titania nanocomposites were prepared starting from titania nanoparticles suspended in benzyl alcohol (BzOH) generated by nonhydrolytic sol–gel process from TiCl4. The obtained suspensions were mixed with an epoxy resin (bisphenol A diglycidyl ether, DGEBA) and the formulations were cured in the presence of ytterbium(III) trifluoromethanesulfonate as cationic initiator. The thermally activated cationic ring‐opening polymerization produced a three‐dimensional network in which the suspending medium BzOH was covalently linked to the epoxy network according to the “activated monomer” mechanism during the propagation step. The presence of titania nanoparticles resulted in a reinforcing and stiffening effect due to both their hydrodynamic effect and, most important, a significantly higher cross‐linking density of the composite material with respect to the unfilled epoxy resin. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40470.  相似文献   

5.
With an aim to develop injectable hydrogel with improved solution stability and enhanced bone repair function, thermogelling poly(ε‐caprolactone‐cop‐dioxanone)‐poly(ethylene glycol)‐poly(ε‐caprolactone–cop‐dioxanone) (PECP)/bioactive inorganic particle nanocomposites were successfully prepared by blending the triblock copolymer (PECP) with nano‐hydroxyapatite (n‐HA) or nano‐calcium carbonate (n‐CaCO3). The hydrogel nanocomposites underwent clear sol–gel transitions with increasing temperature from 0 to 50°C. The obtained hydrogel nanocomposites were investigated by 1H NMR, FT‐IR, TEM, and DSC. It was found that the incorporation of inorganic nanoparticles into PECP matrix would lead to the critical gelation temperature (CGT) shifting to lower values compared with the pure PECP hydrogel. The CGT of the hydrogel nanocomposites could be effectively controlled by adjusting PECP concentration or the content of inorganic nanoparticles. The SEM results showed that the interconnected porous structures of hydrogel nanocomposites were potentially useful as injectable scaffolds. In addition, due to the relatively low crystallinity of PECP triblock copolymer, the aqueous solutions of the nanocomposites could be stored at low temperature (5°C) without crystallization for several days, which would facilitate the practical applications. The PECP/bioactive inorganic particle hydrogel nanocomposites are expected to be promising injectable tissue engineering materials for bone repair applications. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

6.
In this research, we contributed to the search for potential hydrogel–silver dressings by generating hydrogel–silver nanoparticles (AgNPs) composites prepared by the dipping of the crosslinked hydrogel poly(N‐vinylpyrrolidone‐co‐2‐acrylamido‐2‐methylpropanesulfonate sodium) (1:1) and poly(acrylamide‐co‐2‐acrylamido‐2‐methylpropanesulfonate sodium) (1:1) into an aqueous suspension of citrate‐stabilized AgNPs. The composites obtained were evaluated by an antibacterial activity assay on Staphylococcus aureus and Escherichia coli and subjected to an in vitro cytotoxicity assay for human fibroblasts. The composite formed from the hydrogel poly(N‐vinylpyrrolidone‐co‐2‐acrylamido‐2‐methylpropanesulfonate sodium) with 3 mol % N,N‐methylene bisacrylamide showed the highest antibacterial activity and the least cytotoxicity among the composites tested; this makes it an excellent alternative as a potential dressing for the treatment of deep and exudative wounds. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39644.  相似文献   

7.
The known Tandon‐Weng model originated from Mori–Tanaka theory commonly underestimates the Young's modulus of polymer nanocomposites containing spherical nanofillers. This phenomenon is attributed to disregarding the nanoscale interfacial interaction between polymer and nanoparticles, which forms a different phase as interphase in polymer nanocomposites. In this paper, the simplified Tandon‐Weng model is developed assuming interphase and the predictions of the developed model are compared with the experimental data. The calculations of the developed model completely agree with the experimental results at reasonable levels of interphase properties. Additionally, the effects of main material and interphase properties on the predictions of modulus are evaluated. The developed model predicts that a high‐content, thick, and strong interphase creates a high modulus in polymer nanocomposites. These logical observations demonstrate the correctness of the developed model for Young's modulus of polymer nanocomposites. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43816.  相似文献   

8.
Enhancing thermal conductivity of polymeric nanocomposites remains a great challenge because of the poor compatibility between nanofillers and the polymeric matrix and the aggregation effect of nanofillers. We report the enhanced thermal conductivity of poly(lactic acid) (PLA)‐based nanocomposites by incorporation of graphite nanoplatelets functionalized by tannic acid. Graphite nanoplatelets (GNPs) were noncovalently functionalized with tannic acid (TA) by van der Waals forces and π–π interaction without perturbing the conjugated sp2 network, thus preserving the high thermal conductivity of GNPs. PLA‐based nanocomposites with different contents of TA‐functionalized GNPs (TA‐GNPs) were prepared and characterized, and the influences of TA‐GNPs content on the morphologies, mechanical properties, and thermal properties of the composites were investigated in detail. TA‐GNPs remarkably improved the thermal conductivity of PLA up to 0.77 W/(m K), showing its high potential as a thermally conductive filler for polymer‐based nanocomposites. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46397.  相似文献   

9.
Poly(methyl methacrylate)/silica (PMMA/SiOx) nanocomposites were synthesized via sol–gel method and studied by various techniques. The dispersion of the silica particles (10–100 nm) in the matrix was probed by transmission electron microscopy (TEM), while solid‐state NMR and Raman spectroscopy detected the formation of an inorganic network with high degree of crosslinking. To elucidate the impact of the filler on the molecular dynamics of the PMMA, different methods were used; namely differential scanning calorimetry, thermally stimulated depolarization current and broadband dielectric relaxation spectroscopy. All three methods observed a significant impact of the nanoparticles on the segmental dynamics of the matrix, which was expressed as an increase of the glass transition temperature (Tg) in terms of calorimetry and as a shift of the α (segmental) relaxation to lower frequencies in terms of dielectric spectroscopy. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

10.
New synthetic Ni‐talc was used as filler in the synthesis of polyurethane (PU) nanocomposites by in situ polymerization and to emphasize the contribution of the new material compared with natural talc. Good dispersion of Ni‐talc was supported by homogeneous green coloration observed in the polymer matrix. X‐ray diffraction (XRD) analyses indicate the intercalation of polymeric matrix into the filler layers by the increase in d001‐spacing value of the Ni‐talc for the nanocomposites when compared to the pristine filler. The nanocomposites obtained with synthetic talc showed an improvement in the crystallization temperature and in thermal stability when compared to pure PU and the composite obtained with natural talc. The young modulus of PU/talc materials containing both Ni‐talc and natural talc were slight higher than pure PU. As shown by scanning electron microscope (SEM), Ni‐talc fillers were well dispersed into the polymeric matrix probably due to the good compatibility of both phases filler/polymer mainly achieved by the filler OH interaction with the urethane group of the polymeric chain. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41854.  相似文献   

11.
As a kind of reinforcing agent, the application of nanocrystalline cellulose (NCC) is widely limited in hydrophobic polymers owing to its rich hydroxyl surface. In this study, NCC was modified with lauric acid/p‐toluensulfonyl chloride mixture, then the modified nanocrystalline cellulose (mNCC) was incorporated into biopolyester poly(3‐hydroxybutyrate‐co‐4‐hydroxybutyrate) (P(3,4)HB) by solution casting to prepare P(3,4)HB/mNCC nanocomposites. The prepared mNCC and P(3,4)HB/mNCC nanocomposites were characterized by Fourier transform‐infrared, X‐ray diffraction, contact angle test, transmission electron microscopy, scanning electron microscopy, differential scanning calorimetric, polarized optical microscope, dynamic mechanical analysis, and thermogravimetric analysis. The results show that the crystallinity and mechanical properties of P(3,4)HB are greatly improved due to the fact that NCC can be modified successfully and the mNCC can distribute uniformly in nanoscale in the matrix with good compatibility along the interface. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 2015–2022, 2013  相似文献   

12.
The gas‐barrier properties of elastomer are of particular importance, especially for airtight applications. Poly(di‐isoamyl itaconate‐co‐isoprene) (PDII) is a newly invented and respectable biobased elastomer, but the barrier properties of PDII and its composites with carbon black and silica are not satisfying at all. Because there are abundant ester groups in PDII macromolecules and these groups can contribute to the homogeneous dispersion of layer silicates, we applied layered silicates, including montmorillonite (MMT) and rectorite (REC), into the PDII matrix to improve the air impermeability. MMT/PDII and REC/PDII composites were prepared by a cocoagulation method, and the air impermeability of the PDII elastomer was highly improved. The smallest gas permeability index reached 1.7 × 10?17 m2 Pa?1 s?1 at an REC content of 80 phr; this implied a reduction of 85.5%. A comparison of the two types of silicate/PDII composites showed that the MMT/PDII composites had better properties at low filler contents, whereas the REC/PDII composites had better mechanical and gas‐barrier properties at high filler contents. Other structures and properties of the composites were investigated by X‐ray diffraction, transmission electron microscopy, and dynamic mechanical rheology. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40682.  相似文献   

13.
Cross‐linked α‐methylstyrene and acrylonitrile (MStAN) copolymer particles in a latex form were synthesized by free radical emulsion polymerization. The particles showed a narrow size distribution and an average diameter of 65 nm. The amount of the vinyl groups at the surface of the (MStAN) copolymer particles resulted from varied amount of the initiator (APS) and the cross‐linking agent (DVB) was detected by iodine titration method. When filled into ethylene propylene rubber (EPR), the MStAN nano‐particles exhibited excellent reinforcing capabilities, and with the increase of the vinyl groups at the surface of MStAN particles, the tensile stress of MStAN/EPR increased. Results demonstrated that the vinyl groups at the surface of the (MStAN) copolymer particles provided certain chemical interactions between the filler particles and the macromolecular chains of rubber matrix. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41914.  相似文献   

14.
This work reports an innovative way to prepare biopolymer composite by incorporating graphene (GP) synthesized from electrolytic exfoliation into biodegradable polymer blend (polylactide/epoxidized palm oil: PLA/EPO) based on melt‐blending method and studies their physical properties for food packaging and related applications. Multilayer GP structure synthesized by electrolytic exfoliation is confirmed by transmission electron microscopy and Raman spectroscopy, whereas homogeneous GP incorporation in PLA/EPO is verified by scanning electron microscopy and X‐ray diffraction. From thermogravimetric analysis and heat deformation temperature (HDT) studies, the decomposition and HDTs of PLA/EPO/GP composites are higher than those of PLA/EPO but are lower than those of pristine PLA and tend to decrease with increasing GP content because of thermal conductivity effect. From standard tensile test, loading of GP in PLA/EPO at an optimal concentration of 0.6 wt % results in higher elongation at break by as much as 52%. The observed additional elongation under a given tension and the corresponding lower tensile strength/Young's modulus may be attributed to lower binding force of materials in the composite because of the presence of relatively weak GP–PLA/EPO interfaces. Moreover, oxygen permeability is found to decrease with increasing GP contents and oxygen permeability is reduced by 40.33% at the GP loading concentration of 0.6 wt %. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41439.  相似文献   

15.
In this study, we demonstrated a novel three‐dimensional network of thermally stable fumed silica (FS)–resorcinol formaldehyde (RF) nanocomposites via an ionic‐liquid (IL)‐assisted in situ polycondensation process. The study involved subjecting the tailored nanocomposites to thermogravimetric analysis and oxyacetylene flame environment as per ASTM test standards for thermal ablative performance. X‐ray diffraction, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, high‐resolution transmission electron microscopy, Raman spectroscopy, and wettability studies were undertaken to underline the improvement correlation in the microstructure and material properties. Significant reductions in the linear ablation rate (66%) and mass ablation rate (26.6%), along with lower back‐face temperature profiles, marked enhanced ablative properties. The increased char yield (33.3%) and higher temperatures for weight losses evinced the improved thermal stability of the modified RF resin. The uniformly dispersed fused nanosilica with a glassy coating morphology on the ablative surface acted as barrier to oxidation. The results signify that the IL‐assisted modification of the RF resin with FS significantly enhanced ablative performance. A viable replacement to the conventional phenolic nanocomposites for thermal ablative applications to buy critical time for the containment and suppression of thermal‐heat‐flux threats is of paramount importance. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45328.  相似文献   

16.
The role of organic blends of silk fibroin (SF) and rice starch (RS) in bone composites based on inorganic hydroxyapatite (HA) is studied. The physical property of HA‐based composites prepared by using the sol–gel method from Ca(OH)2 and H3PO4 in ethanol and water solvent (4 : 1 volume ratio) could be improved by adding SF and RS (1 : 2 weight ratio) to HA (7 : 3 weight ratio). The Fourier transform infrared spectrometer spectrum shows that the SF and RS organic phases are blended homogeneously into the HA crystal structure. Addition of SF increases the pore size and surface area of the composites, as measured by Brunauer–Emmett–Teller method, but their pore volume is slightly decreased. The values of lattice parameters, crystallinity, and crystallite size, as determined from the field‐emission scanning electron microscope, transmission electron microscope, and X‐ray diffractometer results, increase after adding RS. The results are agreeable with the increase of their compressive strength and Young's modulus. Thus, the improved physical property of the prepared HA–SF/RS composites is better suited as bone‐filling material than the standard HA or HA‐based composites with either SF or RS only. Therefore, due to its low cost, biocompatibility, and nontoxicity, this innovative solution could be worth taken under consideration by the restorative dental and orthopedic implants industry. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42722.  相似文献   

17.
Inspired by mussel adhesive proteins, catechol functional groups play an important role in the ability of the mussel to adhere to organic and inorganic surfaces. A novel functional polyurethane (PU) based on hydrolysable tannins that contain a number of catechol groups was successfully synthesized and characterized. These catechol groups were used as a reducer for Ag (I) to form Ag (0), and to prepare polyurethane/silver nanoparticles composites. These kinds of polyurethane containing Ag nanoparticles showed obvious inhibition of bacterial growth because of the conjunct actions of the well‐known antibacterial property of silver and the antifouling property of PEG. It is possible for these materials to be applied widely into antibacterial adhesive coatings for surface modification due to their low cost and the material‐independent adhesive property of catechol groups in tannins. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41349.  相似文献   

18.
A simple method for the preparation of magnetic nanocomposites consisting of cobalt ferrite (CF; CoFe2O4) nanoparticles, polybenzoxazine (PB), linear low‐density polyethylene (LLDPE), and linear low‐density polyethylene‐g‐maleic anhydride (LgM) is described. The composites were prepared by the formation of benzoxazine (BA)–CF nanopowders followed by melt blending with LLDPE and the thermal curing of BA. The composites were characterized by X‐ray diffraction, thermogravimetric analysis, differential scanning calorimetry, scanning electron microscopy, universal testing machine measurement, and vibrating sample magnetometry. The composites consisting of LLDPE, PB, and LgM (47.5L–47.5PB–5LgM) exhibited a higher tensile strength (23.82 MPa) than pure LLDPE and a greater elongation at break (6.11%) than pure PB. The tensile strength of the composites decreased from 19.92 to 18.55 MPa with increasing CF loading (from 14.25 to 33.25 wt %). The saturation magnetization of the composites containing 33.25 wt % CF was 18.28 emu/g, and it decreased with decreasing amount of CF in the composite. The composite films exhibited mechanical flexibility and magnetic properties. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

19.
This work describes the development of a low-density, renewable, and high reinforcing filler for natural rubber (NR) compounds. The cellulose nanocrystal (CNC)-based hybrid filler was synthesized by decorating the surface of CNCs with silica using a simple and efficient coprecipitation method. The properties of the prepared hybrid were investigated by field emission scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, nitrogen physisorption measurements, and Thermogravimetric analysis. Then, the prepared hybrid was incorporated in NR using two different approaches, namely, dry mixing and coprecipitation. The dynamic and tensile mechanical properties of the hybrid/NR compounds were evaluated indicating that: the coprecipitation method was found much more effective for homogeneous dispersion and the CNC/silica hybrid provided quite higher reinforcement to NR than reference silica; however, much lower density of the final compounds was obtained. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48332.  相似文献   

20.
Natural rubber composites were prepared by the incorporation of palm ash at different loadings into a natural rubber matrix with a laboratory‐size two‐roll mill (160 × 320 mm2) maintained at 70 ± 5°C in accordance with the method described by ASTM D 3184–89. A coupling agent, maleated natural rubber (MANR), was used to improve the mechanical properties of the natural rubber composites. The results indicated that the scorch time and cure time decreased with increasing filler loading, whereas the maximum torque exhibited an increasing trend. Increasing the palm ash loading increased the tensile modulus, but the tensile strength, fatigue life, and elongation at break decreased. The rubber–filler interactions of the composites decreased with increasing filler loading. Scanning electron microscopy of the tensile fracture surfaces of the composites and rubber–filler interaction studies showed that the presence of MANR enhanced the interfacial interaction of the palm ash filler and natural rubber matrix. The presence of MANR also enhanced the tensile properties and fatigue life of palm‐ash‐filled natural rubber composites. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号