首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This article aims to study the effect of the sizing materials type on the mechanical, thermal, and morphological properties of carbon fiber (CF)‐reinforced polyamide 6,6 (PA 6,6) composites. For this purpose, unsized CF and sized CFs were used. Thermogravimetric analysis was performed, and it has been found that certain amounts of polyurethane (PU) and PA sizing agents decompose during processing. The effects of sizing agent type on the mechanical and thermomechanical properties of all the composites were investigated using tensile, Izod impact strength test, and dynamic mechanical analysis. Tensile strength values of sized CF‐reinforced composites were higher than that of unsized CF‐reinforced composites. PA and polyurethane sized CF‐reinforced composites exhibited the highest impact strength values among the other sized CF‐reinforced composites. PU and PA sized CF‐reinforced composites denoted higher storage modulus and better interfacial adhesion values among the other sizing materials. Scanning electron microscope studies indicated that CFs which were sized with PU and PA have better interfacial bonding with PA 6,6 matrix among the sized CFs. All the results confirmed that PA and PU were suitable for CF's sizing materials to be used for PA 6,6 matrix. POLYM. COMPOS., 34:1583–1590, 2013. © 2013 Society of Plastics Engineers  相似文献   

2.
Interests in improving poor interfacial adhesion in carbon fiber‐reinforced polymer (CFRP) composites has always been a hotspot. In this work, four physicochemical surface treatments for enhancing fiber/matrix adhesion are conducted on carbon fibers (CFs) including acid oxidation, sizing coating, silane coupling, and graphene oxide (GO) deposition. The surface characteristics of CFs are investigated by Fourier transform infrared spectroscopy, X‐ray photoelectron spectroscopy, atomic force microscopy, scanning electron microscopy, interfacial shear strength, and interlaminar shear strength. The results showed that GO deposition can remarkably promote fiber/matrix bonding due to improved surface reactivity and irregularity. In comparison, epoxy sizing and acid oxidation afford enhancement of IFSS owing to effective molecular chemical contact and interlocking forces between the fiber and the matrix. Besides, limited covalent bonds between silane coupling and epoxy matrix cannot make up for the negative effects of excessive smoothness of modified CFs, endowing them inferior mechanical properties. Based on these results, three micro‐strengthening mechanisms are proposed to broadly categorize the interphase micro‐configuration of CFRP composite, namely, “Etching” “Coating”, and “Grafting” modifications, demonstrating that proper treatments should be chosen for combining optimum interfacial properties in CFRP composites. POLYM. ENG. SCI., 59:625–632, 2019. © 2018 Society of Plastics Engineers  相似文献   

3.
Hyperbranched aromatic polyamide (HBP) was grafted successfully onto carbon fibers (CFs) on the basis of solution polymerization to enhance the interfacial adhesion strength of CF-reinforced epoxy resin composites. The microstructure and interfacial properties of the CFs before and after decoration were researched. The results indicate that HBP was deposited uniformly onto the CFs with γ-aminopropyl triethoxysilane as the bridging agent. The active groups, roughness, and surface energy of the modified fiber [hyperbranched aromatic polyamide grafted carbon fiber (CF–HBP)] increased visibly in comparison with those of the untreated CFs. The CF–HBP composites revealed simultaneous remarkable enhancements (65.3, 34.3, and 84.8%) in their interfacial shear strength, flexural strength, and modulus, respectively; this was attributed to the improvement in the fiber–epoxy interface through enhanced chemical interactions, mechanical interlocking, and wettability. These agreed with the scanning electron microscopy observations from the fracture surface morphologies of the composites. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47232.  相似文献   

4.
The effect of surface treatment [rare earth solution (RES) and air oxidation] of carbon fibers (CFs) on the mechanical and tribological properties of carbon fiber‐reinforced polyimide (CF/PI) composites was comparatively investigated. Experimental results revealed that surface treatment can effectively improve the interfacial adhesion between carbon fiber and PI matrix. Thus, the flexural strength and wear resistance were significantly improved. The RES surface treatment is superior to air oxidation treatment in promoting interfacial adhesion between carbon fiber and PI matrix. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

5.
Carbon fiber (CF) reinforced matrix composites have been applied widely, however, the interfacial adhesion of composites is weak due to smooth and chemically inert of CF surface. To solve this problem, A polydopamine/nano-silica (PDA-SiO2) interfacial layer on carbon fiber surface was constructed via polydopamine and nano- SiO2 (CF-PDA-SiO2) by a facile and effective method to reinforce polyamide 6 composites (CFs/PA6). The effects of PDA-SiO2 interfacial layer on crystallization structure and behavior, thermal properties, and mechanical properties of CFs/PA6 composites were investigated. Furthermore, interfacial reinforcement mechanism of composites has been discussed. This interfacial layer greatly increased the number of active groups of CF surface and its wettability obviously. The tensile strength of CF-PDA-SiO2/PA6 composites increased by 28.09%, 19.37%, and 26.22% compared to untreated-CF/PA6, CF-PDA/PA6, and CF-SiO2/PA6 composites, respectively, which might be caused by the increased interfacial adhesion between CF and PA6 matrix. The thermal stability, crystallization temperature, crystallinity, and glass transition temperature (Tg) of CF-PDA-SiO2/PA6 composites improved correspondingly, attributing to the heterogeneous nucleation of nano-SiO2 in the crystalline area and hydrogen bonds with molecular chains of PA6 in the amorphous area. This work provides a novel strategy for the construction of interfaces suitable for advanced CF composites with different structures.  相似文献   

6.
The influence of epoxy resin modification by 3‐aminopropyltriethoxysilane (APTES) on various properties of warp knitted viscose fabric is reported in this study. Dynamic mechanical, impact resistance, flexural, thermal properties, and burning behavior of the epoxy/viscose fabric composites are studied with respect to varying content of silane coupling agent. The results obtained for APTES‐modified epoxy resin based composites reinforced with unmodified viscose fabric composites are compared to unmodified epoxy resin based composites reinforced with APTES‐modified viscose fabric. The dynamic mechanical behavior of the APTES‐modified resin based composites indicates improved interfacial adhesion. The composites prepared from modified epoxy resin exhibited a twofold increase in impact resistance. The improved adhesion between the fiber and modified resin was also visible from the scanning electron microscope analysis of the impact fracture surface. There was less influence of resin modification on the flexural properties of the composites. The 5% APTES modification induced early degradation of composites compared to all other composites. The burning rate of all the composites under study is rated to be satisfactory for use in automotive interior applications. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46673.  相似文献   

7.
Modified hollow glass microsphere (HGM) particles have been prepared by surface treatment. Coupling agents such as γ‐aminopropyltriethoxysilane (APTES), di(dioctylpyrophosphato) ethylene titanate (NDZ‐311), and glutaraldehyde (GA) were used as modifiers to improve the hydrophobicity of HGM. Compared with pristine HGM, the modified HGM, especially the particles coupled with APTES‐GA, show better properties on flexural strength, fracture toughness, and dynamic mechanical properties of phenolic syntactic foams. It is revealed that the coupling agent coating layer grafted onto the surface of HGM reduces the polarity of particles, avoiding agglomeration of HGM in phenolic matrix and exhibiting good interfacial interaction between HGM and phenolic matrix. The remarkable improvement of interfacial adhesion between APTES‐GA modified HGM and phenolic matrix is mainly due to the covalent linkage with phenolic resin while the physical entanglement of molecular chains dominates the linkage between other modified HGM and phenolic matrix. APTES‐GA treatment is a more appropriate surface modification method for inorganic particle reinforced phenolic matrix composites. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44415.  相似文献   

8.
We modified polyimide (PI) fibers by a novel hydrolysis approach and fabricated PI‐fiber‐reinforced novolac resin (NR) composites with enhanced mechanical properties. We first used an alkaline–solvent mixture containing potassium hydroxide liquor and dimethylacetamide (DMAc) for the surface modification of the PI fibers. The results indicate that the surface roughness and structure of the PI fibers were controlled by the hydrolysis time and the content of DMAc. With the optimized hydrolysis conditions, the tensile modulus of modified PI fibers improved 15% without compromises in the fracture stress, fracture strain, or thermal stability. The interfacial shear strength between the modified PI fibers and NR increased 57%; this indicated a highly enhanced interfacial adhesion. Finally, the tensile and flexural strengths of the composites increased 72 and 53%, respectively. This research provides an effective method for the surface modification of PI fibers and expands their applications for high‐performance composites. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46595.  相似文献   

9.
As self‐lubricating bearing liner materials, tribological properties of milled pitch‐based carbon fibers (CFs) modified polytetrafluoroethylene (PTFE)/Kevlar fabric composites were investigated, and the microscopic morphology of worn surface was studied. The results show that the appropriate incorporation of CFs can obviously reduce the wear rate of the fabric composite with almost unchanging friction coefficient. The wear rates of 5 wt % CF‐filled PTFE/Kevlar fabric composites are decreased by 30% and 48% for two kinds of composites made with fibers from different producers compared with unfilled fabric composites. Scanning electron microscopy observations show that the appropriate incorporation of CFs obviously improves the interfacial bonding and reduces pull‐out and fracture of Kevlar fiber. Meanwhile, the introduction of CFs at proper fraction is helpful to form smooth and continuous transfer film on the surface of metal counterpart. The improving mechanism of the CF is attributed to increasing mechanical strength, thermal conductivity and self‐lubricating effects. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46269.  相似文献   

10.
In this study, the effects of carbon nanofiber (CNF) surface modification on mechanical properties of polyamide 1212 (PA1212)/CNFs composites were investigated. CNFs grafted with ethylenediamine (CNF‐g‐EDA), and CNFs grafted with polyethyleneimine (CNF‐g‐PEI) were prepared and characterized. The mechanical properties of the PA1212/CNFs composites were reinforced efficiently with addition of 0.3 wt % modified CNFs after drawing. The reinforcing effect of the drawn composites was investigated in terms of interfacial interaction, crystal orientation, crystallization properties and so on. After the surface modification of CNFs, the interfacial adhesion and dispersion of CNFs in PA1212 matrix were improved, especially for CNF‐g‐PEI. The improved interfacial adhesion and dispersion of CNFs in PA1212 matrix was beneficial to reinforcement of the composites. Compared with pure PA1212, improved degree of crystal orientation in the PA1212/CNF‐g‐PEI (CNF‐g‐EDA) composites was responsible for reinforcement of mechanical properties after drawing. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41424.  相似文献   

11.
The overall mechanical performance of glass–carbon hybrid fibers reinforced epoxy composites depends heavily upon fiber–matrix interfacial properties and the service temperatures. Fiber‐bundle pull‐out tests of glass (GF) and/or carbon fiber (CF) reinforced epoxy composites were carried out at room and elevated temperatures. Graphene nanoplatelets were added in the interfacial region to investigate their influence on the interfacial shear strength (IFSS). Results show that IFSS of specimens with fiber‐bundle number ratio of GF:CF = 1:2 is the largest among the hybrid composites, and a positive hybridization effect is found at elevated temperatures. IFSS of all the specimens decreases with the increasing of test temperatures, while the toughness shows a contrary tendency. As verified by scanning electron microscopy observations, graphene nanoplatelets on fiber surface could enhance the IFSS of pure glass/carbon and hybrid fibers reinforced epoxy composites at higher temperatures significantly. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46263.  相似文献   

12.
In this study, we prepared short‐carbon‐fiber (CF)‐reinforced poly(lactic acid) (PLA)–thermoplastic polyurethane (TPU) blends by melt blending. The effects of the initial fiber length and content on the morphologies and thermal, rheological, and mechanical properties of the composites were systematically investigated. We found that the mechanical properties of the composites were almost unaffected by the fiber initial length. However, with increasing fiber content, the stiffness and toughness values of the blends were both enhanced because of the formation of a TPU‐mediated CF network. With the incorporation of 20 wt % CFs into the PLA–TPU blends, the tensile strength was increased by 70.7%, the flexural modulus was increased by 184%, and the impact strength was increased by 50.4%. Compared with that of the neat PLA, the impact strength of the CF‐reinforced composites increased up to 1.92 times. For the performance in three‐dimensional printing, excellent mechanical properties and a good‐quality appearance were simultaneously obtained when we printed the composites with a thin layer thickness. Our results provide insight into the relationship among the CFs, phase structure, and performance, as we achieved a good stiffness–toughness balance in the PLA–TPU–CF ternary composites. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46483.  相似文献   

13.
Novel carboxylic poly(arylene ether nitrile)s (CPEN) functionalized carbon nanotubes (CPEN‐f‐CNTs) were successfully prepared by a simple and effective solvent–thermal route. The CPEN‐f‐CNTs were subsequently used as the novel filler for preparation of high performance poly(arylene ether nitrile)s (PEN) nanocomposites. The SEM characterization of the PEN nanocomposites revealed that the CPEN‐f‐CNTs present better dispersion and interfacial compatibility in the PEN matrix, which was confirmed by the linear rheological analysis (Cole–Cole plots) as well. Consequently, the improved thermal stability (increased initial and maximum decomposition temperature) and enhanced mechanical properties (tensile strength and modulus) were obtained from nanocomposites using CPEN‐f‐CNTs. More importantly, the PEN/CPEN‐f‐CNTs nanocomposites not only show a high dielectric constant but also have low dielectric loss. For example, a dielectric constant of 39.7 and a dielectric loss of 0.076 were observed in the PEN composite with 5 wt% CPEN‐f‐CNTs loading at 100 Hz. Therefore, the flexible PEN/CPEN‐f‐CNTs nanocomposites with outstanding mechanical, thermal and dielectric properties will find wide application in the high energy density capacitors. POLYM. COMPOS., 37:2622–2631, 2016. © 2015 Society of Plastics Engineers  相似文献   

14.
A series of self‐emulsified waterborne epoxy resin (WEP) emulsions were used as surface sizing for carbon fibers (CFs) to improve the interfacial adhesion between the CF and epoxy matrix. In this work, the hydrogenated bisphenol‐A epoxy resin (HBPAE) was modified by polyethylene glycol (PEG) with molecular weights of 400, 800, 1000, 1500, 2000, 4000, and 6000 g/mol. The properties of the WEP emulsion were examined by Fourier transform infrared spectroscopy, dynamic light scattering, and transmission electron microscopy. The surface characteristics of sized CFs were evaluated using scanning electron microscopy, atomic force microscopy, and X‐ray photoelectron spectroscopy. Afterwards, CF/EP composites were prepared and their fracture surface and interlaminar shear strength (ILSS) were examined. The results indicated that PEG2000 modified HBPAE sizing had the optimum emulsion stability and film‐forming ability. Meanwhile, the results also demonstrated that a continuous and uniform sizing layer was formed on the surface of CFs and the surface sizing was excellent in improving the chemical activity of CFs. Compared with unsized CFs, the O1s/C1s composition ratio was observed to increase from 11.51% to 33.17% and the ILSS of CF/EP composites increased from 81.2 to 89.7 MPa, exhibiting better mechanical property than that of commercial Takemoto S64 sized CFs. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44757.  相似文献   

15.
Commercial epoxy sized carbon fibers (CFs) or unsized CFs have poor interfacial adhesion with polyamide 6 (PA6). Here, CFs are coated with polyurethane (PU) and their surface properties in terms of surface chemistry, contact angle, roughness, and morphology, are investigated. The results of Fourier transform infrared spectroscopy, X‐ray photoelectron spectroscopy, scanning electron microscopy, and atomic force microscopy demonstrate PU sizing evidently increases the quantity of polar functional groups on the CFs surface. The surface energy of the PU sized fiber is calculated according to the Owens–Wendt method. Compared with unsized fibers, the contact angle of PU sized fibers is decreased while their total surface energy is increased, indicating superior wettability. Moreover, transverse fiber bundle tests are performed to determine the interfacial adhesion between the CFs and PA6 matrix. The transverse fiber bundle strength of unsized CF is measured to be 12.57 MPa. For PU sized CFs processed with sizing concentration of 1.2%, this value is increased to 24.35 MPa, showing an increase of more than 90%. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46111.  相似文献   

16.
The aim of this study was to improve the mechanical properties of an acrylonitrile–styrene–acrylate copolymer (ASA) with the help of carbon fibers (CFs). Additionally, the effects of the CFs on the morphology, rheological properties, dynamical mechanical properties, electrical resistivity, and heat resistance of the ASA composites were studied with scanning electron microscopy, rotational rheometry, and dynamic thermomechanical analysis (DMA). The mechanical properties of the ASA composites were enhanced largely by the CFs. The maximum tensile strength of the ASA/CF composites reached 107.2 MPa. The flexural strength and flexural modulus also reached 162.7 MPa and 12.4 GPa, respectively. These findings were better than those of neat ASA; this was attributed to the excellent interfacial adhesion between the CFs and ASA resin. Rheological experiments proved that the viscosity and storage modulus (G′) values of the ASA/CF composites did not increase until the CF content reached 20%. The DMA outcomes confirmed that the glass‐transition temperature of the ASA composites was elevated from 120.6 to 125°C. Importantly, the G′ values of the composites with 20 and 30% CFs showed a large increase during heating. In addition, the ASA/CF composites exhibited excellent conductivity and heat resistance. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43252.  相似文献   

17.
Hybrid composites based on poly(ether‐ether‐ketone) (PEEK) were fabricated with fly ash and mica. Nearly 5, 10, and 15 wt% of fly ash were replaced by mica of the optimized fly ash reinforced composites and were subjected to dynamical mechanical analysis to determine the dynamic properties as a function of temperature. The storage modulus E′ was found to decrease with the increase of weight fraction of mica. Loss modulus was also found to decrease with loading while the damping property was found to increase marginally. Peak height of tan δ for hybrid composites were decreased by varying combinations of fly ash with mica. It is probably due to improved crystallinity of PEEK and strong interaction between the fillers and PEEK matrix. Cole–Cole analysis was made to understand the phase behavior of the composite samples. Kubat parameter was calculated to study the adhesion between matrix and filler of the fabricated composites. Without surface modification for inorganic fillers, the distribution of two different shape filler particles appears to be reasonably uniform. The use and limitation of various theoretical equations to predict the tan δ and storage modulus of filler reinforced composites have been discussed. Addition of both fillers opens up new opportunities for development of high‐performance multifunctional materials suitable for industrial applications. Scanning electron micrographs of tensile fracture surfaces of composites demonstrated filler–matrix bonding. POLYM. COMPOS., 35:68–78, 2014. © 2013 Society of Plastics Engineers  相似文献   

18.
The effect of rare earth solution (RES) surface treatment of carbon fibers (CFs) on the tensile strength and tribological properties of CF‐reinforced polyimide (CF/PI) composite was investigated. Experimental results revealed that the tensile strength of RES‐treated CFs reinforced PI composite was improved by about 19% compared with that of untreated composite, while 7% improvement was achieved by air oxidation. Compared with the untreated and air‐oxidated CF/PI composite, the RES‐treated composite had the lowest friction coefficient and specific wear rate under given applied load and reciprocating sliding frequency. RES treatment effectively improved the interfacial adhesion between CFs and PI. The strong interfacial adhesion of the composite made CFs not easy to detach from the PI matrix and prevented the rubbing‐off of PI, and accordingly improved the friction and wear properties of the composite. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers  相似文献   

19.
To enhance interfacial properties of carbon fibers (CFs)-reinforced methylphenylsilicone resin (MPSR) composites, we introduced an appropriate interface reinforced by trisilanolphenyl-polyhedral oligomeric silsesquioxanes (trisilanolphenyl-POSS) between CFs and MPSR with a liquid phase deposition strategy. Chemical bonds among silanol groups of trisilanolphenyl-POSS, hydroxyl-functionalized CF (CF–OH), and silanol end groups of MPSR in the coating were expected to be formed through condensation reaction during the prepared process. CFs with and without sizing treatment-reinforced MPSR composites were prepared by a compression molding method. X-ray photoelectron spectroscopy revealed that trisilanolphenyl-POSS particles enhanced the contents of fiber surface oxygen-containing groups and silicon-containing functional groups. Scanning electron microscopy and atomic force microscopy images showed that trisilanolphenyl-POSS nanoparticles have been introduced onto the fiber surface obviously and the surface roughness increased sharply. Dynamic contact angle analysis indicated that trisilanolphenyl-POSS-modified sizing agent could improve the fiber wettability and surface energy significantly. Short-beam bending test and impact toughness test results showed that the interlaminar shear strength and impact resistance of the sized CFs composites were enhanced greatly with increasing amplitudes of more than 35 and 27% in comparison with those of untreated CF composites, respectively. Cryo-fractured surface topographies of composites confirmed that interfacial adhesion between CFs and MPSR has been improved after sizing treatment. Meanwhile, the sizing treatment does not decrease single fiber tensile strength.  相似文献   

20.
Pretreatment of the sisal fiber (SF) grafting with L‐lactide (LA) monomer via a ring‐opening polymerization catalyzed by a Sn(II)‐based catalyst was performed to improve the interfacial adhesion between SF and poly (lactic acid) (PLA). Biocomposites from LA‐grafted SF (SF‐g‐LA) and PLA were prepared by compression molding with fiber weight fraction of 10, 20, 30, and 40%, and then were investigated in contrast with alkali‐treated sisal fiber (ASF) reinforced PLA composites and untreated SF reinforced PLA composites. PLA composites reinforced by half‐and‐half SF‐g‐LA/untreated SF (half SF‐g‐LA) were prepared and studied as well, considering the disadvantages of SF‐g‐LA. The results showed that both the tensile properties and flexural properties of the SF‐g‐LA reinforced PLA composites were improved noticeably as the introduction of SF‐g‐LA, compared with pure PLA, untreated SF reinforced PLA composites and ASF reinforced PLA composites. The mechanical properties of the half SF‐g‐LA reinforced PLA composites were not worse, even better in some aspects, than the SF‐g‐LA reinforced PLA composites. Fourier transform infrared analysis and differential scanning calorimetry analysis exhibited that both the chemical composition and crystal structure of the SFs changed after LA grafting. In addition, the fracture surface morphology of the composites was studied by scanning electron microscopy. The morphological studies demonstrated that a better adhesion between LA‐grafted SF and PLA matrix was achieved. POLYM. COMPOS., 37:802–809, 2016. © 2014 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号