首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, the small molecule with double-phosphaphenanthrene structure was successfully grafted on the surface of graphene oxide (GO), which is called functionalized graphene oxide (FGO). The introduction of FGO improved the poor interfacial compatibility between graphene and epoxy matrix. And FGO could be used as the highly effective flame retardant. The thermogravimetric analysis results showed a significant improvement in the char yield of cured FGO/EP. When the content of FGO was 3 wt %, the limiting oxygen index value reached 30.4%. At the same time, the three-point bending and thermomechanical tests confirmed that the mechanical properties of the epoxy resin composites were improved. Based on the char analyses of SEM images and Raman spectroscopy, the flame retardant could promote the formation of a stable carbon layer. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 47710.  相似文献   

2.
To improve the thermal and mechanical properties of liquid silicone rubber (LSR) for application, the graphene oxide (GO) was proposed to reinforce the LSR. The GO was functionalized with triethoxyvinylsilane (TEVS) by dehydration reaction to improve the dispersion and compatibility in the matrix. The structure of the functionalized graphene oxide (TEVS‐GO) was evaluated by Thermogravimetric analysis (TGA), Fourier transform infrared (FTIR) spectra, X‐ray diffraction (XRD), and energy dispersive X‐ray spectroscopy (EDX). It was found that the TEVS was successfully grafted on the surface of GO. The TEVS‐GO/LSR composites were prepared via in situ polymerization. The structure of the composites was verified by FTIR, XRD, and scanning electron microscopy (SEM). The thermal properties of the composites were characterized by TGA and thermal conductivity. The results showed that the 10% weight loss temperature (T10) increased 16.0°C with only 0.3 wt % addition of TEVS‐GO and the thermal conductivity possessed a two‐fold increase, compared to the pure LSR. Furthermore, the mechanical properties were studied and results revealed that the TEVS‐GO/LSR composites with 0.3 wt % TEVS‐GO displayed a 2.3‐fold increase in tensile strength, a 2.79‐fold enhancement in tear strength, and a 1.97‐fold reinforcement in shear strength compared with the neat LSR. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42582.  相似文献   

3.
The effects of poly(vinyl butyral) (PVB) and acid‐functionalized multiwalled carbon nanotube modification on the thermal and mechanical properties of novolac epoxy nanocomposites were investigated. The nanocomposite containing 1.5 wt % PVB and 0.1 wt % functionalized carbon nanotubes showed an increment of about 15°C in the peak degradation temperature compared to the neat novolac epoxy. The glass‐transition temperature of the novolac epoxy decreased with increasing PVB content but increased with an increase in the functionalized carbon nanotube concentration. The nanocomposites showed a lower tensile strength compared to the neat novolac epoxy; however, the elongation at break improved gradually with increasing PVB content. Maximum elongation and impact strength values of 7.4% and 17.0 kJ/m2 were achieved in the nanocomposite containing 1.5 wt % PVB and 0.25 wt % functionalized carbon nanotubes. The fractured surface morphology was examined with field emission scanning electron microscopy, and correlated with the mechanical properties. The functionalized carbon nanotubes showed preferential accumulation in the PVB phase beyond 0.25 wt % loading. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43333.  相似文献   

4.
The influences of different gravity environments on the curing process and the cured products of carbon‐nanotube‐reinforced epoxy composites were investigated in this study. Different gravity environments were simulated with a superconducting magnet on the basis of which resin matrix composites with different amino‐functionalized multiwalled carbon nanotube (NH2‐MWCNT) concentrations of 0.1, 0.3, 0.5, and 1 wt % were tested. Fourier transform infrared spectroscopy, differential scanning calorimetry, dynamic mechanical analysis, thermomechanical analysis (TMA), thermogravimetric analysis, scanning electron microscopy, transmission electron microscopy, and three‐point bending tests were used to analyze the characteristics of different curing processes and cured products. From the results, we observed that the curing rate of the epoxy composites was influenced by different gravity values, and there was anisotropy in the NH2‐MWCNT‐reinforced epoxy composites cured in the simulated microgravity environment. More effects of gravity on the curing process and cured products could be obtained through detailed experiments and discussion; this is important and fundamental for improving and enhancing the properties of composite materials used in different gravity environments. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41413.  相似文献   

5.
A novel graphene nanomaterial functionalized by octa(aminopropyl) polyhedral oligomeric silsesquioxane (OapPOSS) was synthesized and then confirmed by Fourier transform infrared spectroscopy, thermogravimetric analysis (TGA), Raman spectroscopy, X‐ray photoelectron spectroscopy, transmission electron microscopy, scanning electron microscopy with energy‐dispersive X‐ray spectroscopy (SEM EDX), atomic force microscopy, and X‐ray diffraction. The obtained functionalized graphene (OapPOSS‐GO) was used to reinforce waterborne polyurethane (WPU) to obtain OapPOSS‐GO/WPU nanocomposites by in situ polymerization. The thermal, mechanical, and hydrophobic properties of nanocomposites as well as the dispersion behavior of OapPOSS‐GO in the polymer were investigated by TGA, a tensile testing machine, water contact angle tests, and field emission SEM, respectively. Compared with GO/WPU and OapPOSS/WPU composites, the strong interfacial interaction between OapPOSS‐GO and the WPU matrix facilitates a much better dispersion and load transfer from the WPU matrix to the OapPOSS‐GO. It was found that the tensile strength of the OapPOSS‐GO/WPU composite film with 0.20 wt % OapPOSS‐GO exhibited a 2.5‐fold increase in tensile strength, compared with neat WPU. Better thermal stability and hydrophobicity of nanocomposites were also achieved by the addition of OapPOSS‐GO. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44440.  相似文献   

6.
To improve the thermal and mechanical properties and further to expand its applications of epoxy in electronic packaging, reduced graphene oxide/epoxy composites have been successfully prepared, in which dopamine (DA) was used as reducing agent and modifier for graphene oxide (GO) to avoid the environmentally harmful reducing agents and address the problem of aggregation of graphene in composites. Further studies revealed that DA could effectively eliminate the labile oxygen functionality of GO and generate polydopamine functionalized graphene oxide (PDA‐GO) because DA would be oxidated and undergo the rearrangement and intermolecular cross‐linking reaction to produce polydopamine (PDA), which would improve the interfacial adhesion between GO and epoxy, and further be beneficial for the homogenous dispersion of GO in epoxy matrix. The effect of PDA‐GO on the thermal and mechanical properties of PDA‐GO/epoxy composites was also investigated, and the incorporation of PDA‐GO could increase the thermal conductivity, storage modulus, glass transition (Tg), and dielectric constant of epoxy. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39754.  相似文献   

7.
Three surface modifiers, namely, aminopolyether (D2000), phenyl isocyanate, and poly(ethylene glycol) (PEG800), which have different affinities to the hard and soft segments in polyurea, were used to synthesize functionalized graphite oxides (GO). The PEG800‐modified (PEG800‐GO) and phenyl isocyanate‐modified (i‐GO) GOs were highly exfoliated and dispersed in DMF, whereas the D2000‐modified GO (D2000‐GO) produced some precipitates. Polyurea/GO composites were prepared using a solution‐blending method, in which functionalized GO platelet suspensions in dimethyl formamide were used. Results show that PEG800‐GO and i‐GO are uniformly dispersed throughout the polymer matrix on a nanoscale, whereas D2000‐GO forms visible aggregates. The well‐dispersed GO platelets improved the thermal stability and mechanical properties of polyurea. PEG800‐GO, which has a strong affinity for the soft segments, shows a more significant reinforcing effect. At 2.0 wt % GO loading, the tensile strength of polyurea was enhanced by ~75%. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39775.  相似文献   

8.
In this study, we report an effective method to fabricate high‐performance polyimide (PI)‐based nanocomposites using 3‐aminopropyltriethoxysilane functionalized graphene oxide (APTSi‐GO) as the reinforcing filler. APTSi‐GO nanosheets exhibit good dispersibility and compatibility with the polymer matrix because of the strong interfacial covalent interactions. PI‐based nanocomposites with different loadings of functionalized graphene nanosheets (FGNS) were prepared by in situ polymerization and thermal imidization. The mechanical performance, thermal stability, and electrical conductivity of the FGNS/PI nanocomposites are significantly improved compared with those of pure PI by adding only a small amount of FGNS. For example, a 79% improvement in the tensile strength and a 132% increase in the tensile modulus are achieved by adding 1.5 wt % FGNS. The electrical and thermal conductivities of 1.5 wt % FGNS/PI are 2.6 × 10?3 S/m and 0.321 W/m·K, respectively, which are ~1010 and two times higher than those of pure PI. Furthermore, the incorporation of graphene significantly improves the glass‐transition temperature and thermal stability. The success of this approach provides a good rationale for developing multifunctional and high‐performance PI‐based composite materials. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42724.  相似文献   

9.
Multiwall carbon nanotubes (MWCNTs) were amino‐functionalized by 1,2‐ethylenediamine (EDA)' triethylenetetramine (TETA), and dodecylamine (DDA), and investigated by fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, and thermogravimetric analysis (TGA). The dispersion of the DDA functionalized MWCNT in DMF is better than that of the MWCNT functionalized by the EDA and the TETA. Carbon nanotubes reinforced epoxy resin composites were prepared, and the effect of the amino‐functionalization on the properties of the composites was investigated by differential scanning calorimetry (DSC), dynamical mechanical analysis (DMA), and TGA. The composites reinforced by the MWCNTs demonstrate improvement in various mechanical properties. The increase of Tg of the composites with the addition of amino‐functionalized MWCNT compared to the Tg of the composites with the addition of unfunctionalized MWCNT was due to the chemical combination and the physical entanglements between amino group from modified MWNTs and epoxy group from the epoxy resin. The interfacial bonding between the epoxy and the amino group of the EDA and the TETA‐modified MWCNT is more important than the well dispersion of DDA‐modified MWCNT in the composites for the improvement of the mechanical properties. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

10.
This study thoroughly studied the implements of fluorosilane modified graphene oxide (GO) on the mechanical, thermal, and water absorption properties of the epoxy composites built up by specific content of modified GO. Fluorosilane graphene oxide (GOSiF) was analyzed using Fourier transform infrared spectroscopy, thermogravimetric analysis, Raman spectroscopy, X‐ray photoelectron spectroscopy, and X‐ray diffractometer. The epoxy composites tensile and bending modulus were increased by 11.46% and 62.25% with 0.1 and 0.5 wt% GOSiF loading, respectively. The good interfacial interaction was observed between epoxy matrix and GOSiF nanosheets under scanning electron microscopy. The thermal stability increases with GOSiF loading. Epoxy composite with 0.3 wt% GOSiF shows 5 °C increases in the T10%. The residual weight raised by 58.67% with 0.3 wt% GOSiF content. The water absorption study revealed small water uptake was obtained for all GOSiF composites. With 0.3 wt% loading of GOSiF, the maximum water content drops from 4.97% for neat epoxy to 1.98%. POLYM. ENG. SCI., 59:1250–1257 2019. © 2019 Society of Plastics Engineers  相似文献   

11.
In this study, the gallic acid‐based epoxy resin (GA‐ER) and alkali‐catalysed biphenyl‐4,4′‐diol formaldehyde resin (BPFR) are synthesized. Glass fibre‐reinforced GA‐ER/BPFR composites are prepared. Graphene oxide (GO) is used to improve the mechanical and thermal properties of GA‐ER/BPFR composites. Dynamic mechanical properties and thermal, mechanical, and electrical properties of the composites with different GO content are characterized. The results demonstrate that GO can enhance the mechanical and thermal properties of the composites. The glass transition temperature, Tg, of the BPFR/GA‐ER/GO composites is 20.7°C higher than the pure resin system, and the 5% weight loss temperature, Td5, is enhanced approximately 56.6°C. When the BPFR: GA‐ER mass ratio is at 4 : 6 and GO content is 1.0–1.2 wt %, the tensile and impact strengths of composites are 60.97 MPa and 32.08 kJ/m2 higher than the pure resin composites, respectively. BPFR/GA‐ER composites have better mechanical properties, and can replace common BPA epoxy resins in the fabrication of composites. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42637.  相似文献   

12.
Diamond‐epoxy composites reinforced with low content of submicron diamond powder 0.1, 0.4, 0.7, and 1.0 wt % were synthesized. As received diamond powder was acid treated to purify and functionalize diamond particles. Fourier Transform Infrared Spectroscopy was utilized to study the moieties attached to the diamond particles. The trace elemental analysis of impurities in diamond powder before and after acid treatment was performed using ion beam techniques. The mechanical properties of the epoxy matrix were enhanced with the addition of purified and functionalized diamond powder. The Dynamical mechanical analysis results revealed that storage modulus of the prepared composites has been increased by ~ 100% with diamond loading of 0.7 wt %. The Vickers's hardness of the diamond‐epoxy composite was ~ 39% higher than that of pure epoxy for the loading of 1.0 wt % diamond powder. Mechanisms responsible for the enhancement of the mechanical properties are discussed. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

13.
In this study, to investigate the effect of functionalized carbon nanotubes on the thermal and mechanical properties of the poly(vinyl butyral) (PVB) resin, PVB/functionalized single‐walled carbon nanotube (f‐SWCNT) composites were fabricated by a solution casting method. The functionalized nanotubes were prepared by acid treatment. The formation of oxygen‐containing functional groups on the surface of the nanotubes was confirmed by Fourier transform infrared spectroscopy, energy‐dispersive X‐ray spectroscopy, and scanning electron microscopy (SEM) measurements. SEM analysis also showed that the nanotubes were dispersed well in the PVB matrix. The thermal stability of the composites were investigated with thermogravimetric analysis, and the results show better stability for PVB in the presence of a very low content of the f‐SWCNTs. The prepared composites exhibited a significant increase in the temperature of degradation at 50 wt % loss and also in the onset temperature and decomposition temperature at the maximum rate of weight loss of butyral degradation. A significant enhancement in the mechanical properties was also achieved for these prepared composites. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40481.  相似文献   

14.
A new compatibilizer [P(GMA‐co‐VCz) copolymer] containing carbazole moiety and reactive epoxide group, which can functionalize multiwalled carbon nanotubes (MWCNTs) for making superior epoxy composites, was prepared by a simple one‐pot free radical polymerization. The designed compatibilizer could noncovalently functionalize multiwalled carbon nanotube (MWCNTs) via π‐π interaction as evidenced from fluorescence, Raman, and FTIR spectra analysis, and efficiently disperse MWCNTs in organic solvents. TEM images suggest a good wrapping of P(GMA‐co‐VCz) on MWCNTs surface. P(GMA‐co‐VCz) functionalized MWCNTs were more homogeneously dispersed in epoxy matrix than the case without compatibilizer, indicating that the compatibilizer improves the compatibility between MWCNTs and epoxy resin. In addition, the presence of epoxide groups in compatibilizer could generate covalent bonds with the epoxy matrix and improve the interface interaction between MWCNTs and epoxy matrix. As a result, mechanical and electrical properties of the epoxy composites with compatibilizer were largely improved as compared with those of composites without compatibilizer. The addition of as little as 0.15 wt % of MWCNTs to epoxy matrix affords a great increase of 40% in storage modulus and 52.5% in elongation at break. Furthermore, a sharp decrease of almost 9 orders of magnitude in volume resistivity of epoxy composite is observed. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45022.  相似文献   

15.
This study investigates the effect of the thiol‐ene click reaction on thermal conductivity and shear strength of the epoxy composites reinforced by various silane‐functionalized hybrids of sulfhydryl‐grafted multi‐walled carbon nanotubes (SH‐MWCNTs) and vinyl‐grafted MWCNTs (CC‐MWCNTs). The results of Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, thermal gravimetric analysis (TGA), and transmission electron microscopy (TEM) show that the sulfhydryl groups and vinyl groups are successfully grafted onto the surface of MWCNTs, after treatment of MWCNT with triethoxyvinylsilane and 3‐mercaptopropyltrimethoxysilane, respectively. Scanning electron microscopy (SEM), HotDisk thermal constant analyzer (HotDisk), optical microscope, and differential scanning calorimetry (DSC) are used to characterize the resultant composites. It is demonstrated that the hybrid of 75 wt % SH‐MWCNTs and 25 wt % CC‐MWCNTs has better dispersion and stability in epoxy matrix, and shows a stronger synergistic effect in improving the thermal conductivity of epoxy composite via the thiol‐ene click reaction with 2,2′‐azobis(2‐methylpropionitrile) as thermal initiator. Furthermore, the tensile shear strength results of MWCNT/epoxy composites and the optical microscopy photographs of shear failure section indicate that the composite with the hybrid MWCNTs has higher shear strength than that with raw MWCNTs. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44579.  相似文献   

16.
17.
In this study, multiwall carbon nanotubes (MWNTs) functionalized by m‐xylylenediamine is used as thermal conductive fillers to improve their dispersibility in epoxy resin and the thermal conductivity of the MWNTs/bisphenol‐A glycidol ether epoxy resin composites. Functionalization with amine groups of MWNTs is achieved after such steps as carboxylation, acylation and amidation. The thermal conductivity, impact strength, flexural strength, and fracture surfaces of MWNTs/epoxy composites are investigated with different MWNTs. The results show that m‐xylylenediamine is successfully grafted onto the surface of the MWNTs and the mass fraction of the organic molecules grafted onto MWNTs is about 20 wt %. The thermal conductivity of MWNTs/epoxy composites is further enhanced to 1.236 W/mK with 2 wt % m‐MWNTs. When the content of m‐MWNTs is 1.5 wt %, the impact strength and flexural strength of the composites are 25.85 KJ/m2, 128.1 MPa, respectively. Scanning electron microscope (SEM) results show that the fracture pattern of composites is changed from brittle fracture to ductile fracture. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41255.  相似文献   

18.
Homogeneous dispersion and strong filler–matrix interfacial interactions were vital factors for graphene for enhancing the properties of polymer composites. To improve the dispersion of graphene in the polymer matrix and enhance the interfacial interactions, graphene oxide (GO), as an important precursor of graphene, was functionalized with amine‐terminated poly(ethylene glycol) (PEG–NH2) to prepare GO–poly(ethylene glycol) (PEG). Then, GO–PEG was further reduced to prepare modified reduced graphene oxide (rGO)–PEG with N2H4·H2O. The success of the modification was confirmed by Fourier transform infrared spectroscopy, thermogravimetric analysis, and Raman spectroscopy. Different loadings of rGO–PEG were introduced into polyimide (PI) to produce composites via in situ polymerization and a thermal reduction process. The modification of PEG–NH2 on the surface of rGO inhibited its reaggregation and improved the filler–matrix interfacial interactions. The properties of the composites were enhanced by the incorporation of rGO–PEG. With the addition of 1.0 wt % rGO–PEG, the tensile strength of PI increased by 81.5%, and the electrical conductivity increased by eight orders of magnitude. This significant improvement was attributed to the homogeneous dispersion of rGO–PEG and its strong filler–matrix interfacial interactions. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45119.  相似文献   

19.
The effect of graphene oxide (GO) flake size on thermal properties of GO/poly(methyl methacrylate) (GO/PMMA) composites prepared via in situ polymerization was investigated. Two styles of GO sheets were synthesized from different sizes of graphite powders by modified Hummers' method and GO/PMMA composites with GO of different sizes were prepared via in situ polymerization. Transmission electron microscopy verified that GO sheets produced from large graphite powders was obviously larger than that from small graphite powders. The similar number of layers and disorder degree of two types of GO sheets were proved by X‐ray diffraction and Raman, respectively. X‐ray diffraction and scanning electron microscopy results of GO/composites proved the homogenous dispersion of both two types of GO sheets in polymer matrix. Dynamic mechanical analysis and thermogravimetric analysis results showed that large GO sheets exhibit better improvement than small GO sheets in thermal properties of the composites. Compared with neat PMMA, the glass transition temperature and decomposition temperature of the composites with large GO sheets (0.20 wt %) were increased by 15.9 and 25.9 °C, respectively. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46290.  相似文献   

20.
Polyimide (PI) nanocomposites with 4,4′‐bisphenol A dianhydride, 4,4′‐oxydiphthalic anhydride, and diaminodiphenyl methane (MDA) as comonomers and functionalized with graphene oxide (GO), were prepared by in situ polymerization. Only a small amount of GO (0.03–0.12 wt %) is added to improve the mechanical properties of PI and to avoid a substantial decrease of PI transparence. The nanocomposites are characterized by FTIR, X‐ray diffraction, thermogravimetric analysis, transmission electron microscope, tensile test, and UV‐vis spectroscopy. It is demonstrated that the PI/GO composite films possess transmittance of above 80% at wavelengths of 500–800 nm when the GO content is under 0.12 wt %, while the stress intensity and Young's modulus are improved by 29 and 25%, respectively. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号