首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The gelation characteristics of acrylic‐acid‐based polymers in the presence of a range of cationic species, namely Ca2+, Mg2+ and Al3+, were investigated using in situ rheological measurements during photo‐polymerisation. Fourier transform mechanical spectroscopy was used to identify the gel point, using the Winter–Chambon criteria which allow the gel point to be pinpointed by establishing the sample spanning network and quantitatively determining stiffness, relaxation exponent, gel stiffness and fractal dimensions. The results showed that the gelation processes were greatly influenced by the type of cationic species that was used in the syntheses. At the gel point, more open network clusters were formed when Al3+ cations were used instead of Ca2+ cations or Mg2+ cations, all relating to chloride salts. Although the concentrations of the chelating/crosslinking aluminium species affected the kinetics of the gelation, the critical gel characteristics were hardly affected. Also the solubility of the chosen aluminium salt was shown to dictate the crosslinking rates and the properties of the critical gels. The extents of the reactions and the types of network formed at the gel point and beyond indicated that reactions between the Al3+ ions and COOH sites, from growing poly(acrylic acid) molecular chains, differ from those exhibited by Mg2+ and Ca2+ ions. All of the chelation/crosslinking reactions met the criteria of low mutation number (Nmu), such that in all cases Nmu ? 1. © 2019 Society of Chemical Industry  相似文献   

2.
The effect of the initiator system used in the gel preparation on the spatial inhomogeneity in poly(acrylamide) (PAAm) and poly(N,N‐dimethylacrylamide) (PDMA) hydrogels was investigated by static light scattering and elasticity measurements. The hydrogels were prepared by free‐radical crosslinking copolymerization of the monomers acrylamide (AAm) or N,N‐dimethylacrylamide (DMA) with N,N′‐methylenebisacrylamide as a crosslinker. Two different redox‐initiator systems, ammonium persulfate (APS)–N,N,N′,N′‐tetramethylethylenediamine (TEMED) and APS–sodium metabisulfite (SPS), were used to initiate the gelation reactions. Compared to the APS–TEMED redox pair, no significant scattered light intensity rise was observed during the crosslinking polymerization reactions initiated by the APS–SPS system. It was found that both PAAm and PDMA gels are much more homogeneous when the APS–SPS redox pair was used as the initiator. The results are explained by the formation of shorter primary chains as well as the delay of the gel point in APS–SPS initiated gel formation reactions. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3228–3237, 2007  相似文献   

3.
In this work, the rheological characterization of the gel point in polymer‐modified asphalts is carried out. The viscoelastic properties of polymer‐modified asphalts, in which the polymer is styrene–ethylene butylene–styrene (SEBS) with grafted maleic anhydride (MAH), were measured as a function of MAH concentration. The crosslinking reaction that leads to gelation is characterized by power‐law frequency‐dependent loss and storage modulus (G″ and G′). The relaxation exponent n (a viscoelastic parameter related to the cluster size of the gel) and gel strength S (related to the mobility on the crosslinked chain segments) were determined. The value of the power‐law exponents depends on the composition of polymer, ranging from 0.30 to 0.56, while the value of the rigidity modulus at the gelation point (S) increases with the amount of reactive groups of the modifier polymer. Both n and S are temperature‐dependent in the blends. The blends containing gels present a coarse morphology, which is related to the rheological properties of the matrix and dispersed phase. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

4.
Semi‐interpenetrating polymer network hydrogels with different compositions of chitosan (Cs), acrylic acid, and citraconic acid were synthesized via free‐radical polymerization with ethylene glycol dimethacrylate as a crosslinker. The variations of the swelling percentages of the hydrogels with time, temperature, and pH were determined, and Cs–poly(acrylic acid) (PAA) hydrogels were found to be most swollen at pH 7.4 and 37°C. Scanning electron micrographs of Cs–PAA and Cs–P(AA‐co‐CA)‐1 (Cs‐poly(acrylicacid‐co‐citraconir acid)?1) were taken to observe the morphological differences in the hydrogels. Although the less swollen hydrogel, Cs–P(AA‐co‐CA)‐1, had a sponge‐type structure, the most swollen hydrogel, Cs–PAA, displayed a uniform porous appearance. Fluconazole was entrapped in Cs–P(AA‐co‐CA)‐1 and Cs–PAA hydrogels, and the release was investigated at pH 4.0 and 37°C. The kinetic release parameters of the hydrogels (the gel characteristic constant and the swelling exponent) were calculated, and non‐Fickian diffusion was established for Cs–PAA, which released fluconazole much more slowly than the Cs–P(AA‐co‐CA)‐1 hydrogel. A therapeutic range was reached at close to 1 h for both hydrogels. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

5.
A series of nanocomposite hydrogels were prepared from acrylic acid (AA), N‐isopropylacrylamide (NIPAAm), and intercalated hydrotalcite (IHT) by photopolymerization. The influence of the intercalating content of 2‐acrylamido‐2‐methyl propane sulfonic acid (AMPS) in HT on the swelling and mechanical properties for poly(AA‐co‐NIPAAm)/IHT nanocomposite hydrogels was investigated. The results showed that the higher the content of the AMPS‐HT was, the higher the swelling ratio of the gels and the higher the content of the intercalating agent was, the lower swelling ratio. It was also demonstrated that the swelling ratio of the gel was not affected by the counterion in HT. The gel strength and crosslinking density were not enhanced by adding AMPS‐HT into the gel composition, but the maximum effective crosslink density and shear modulus of the nanocomposite hydrogels were increased with an increase of the content of the intercalating agent in HT. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 1572–1580, 2005  相似文献   

6.
A series of novel hydrogels were prepared from acrylic acid (AA), N‐vinyl pyrrolidone (NVP), and chitosan by photopolymerization. The swelling behavior, gel strength, and drug release behavior of the poly(AA/NVP) copolymeric hydrogels and corresponding interpenetrating polymer network hydrogels were investigated. Results showed that the swelling ratios for the present hydrogels decreased with an increase of NVP content in the gel, but the gel strength increased with an increase of NVP content in the gel. Results also showed that the drug‐release behavior for the gels is related to the ionicity of drug and the swelling ratio of the gel. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 2135–2142, 2004  相似文献   

7.
Tyrosinase‐mediated crosslinking of chondroitin sulfate–tyramine (CS‐TA) conjugates was successfully applied in the preparation of biodegradable in situ forming hydrogels under physiological conditions. Depending on the polymer concentration, the degree of substitution of TA residue and the tyrosinase concentration, the gelation times ranged from 2.3 to 129 min. Studies on the gel contents of CS‐TA hydrogels showed that their degrees of crosslinking could be controlled by varying the tyrosinase concentrations. CS‐TA hydrogels could be completely degraded by the chondroitinase ABC within a time range from 6 days to 11 weeks. CS‐TA hydrogels possessed highly elastic properties and their storage moduli varied from 120 to 1300 Pa, as determined by rheological analysis. Scanning electron microscopy observation confirmed that CS‐TA hydrogels contained a well‐interconnected pore structure. A live–dead assay demonstrated that NIH 3T3 fibroblasts incorporated in CS‐TA hydrogels retained their viability. In addition, in vitro release of methylene blue (a photodynamic therapy drug) from CS‐TA hydrogels could be effectively sustained by the drug encapsulation in the hydrogels. This study indicates that tyrosinase‐mediated in situ forming CS‐TA hydrogels are promising for biomedical applications including drug release and tissue engineering. © 2012 Society of Chemical Industry  相似文献   

8.
BACKGROUND: ‘Click’ chemistry, or the 1,3‐dipolar cycloaddition of organic azides with alkynes, has been evaluated for many biomedical purposes; however, its utility in crosslinking hydrogels in situ is limited by the toxicity of the requisite copper(I) catalyst. We report the first use of catalyst‐free Huisgen cycloaddition to generate crosslinked hydrogels under physiological conditions using multivalent azide‐functionalized polymers and an electron‐deficient dialkyne crosslinker. RESULTS: Water‐soluble azide‐functionalized polymers were crosslinked with an electron‐deficient dialkyne crosslinker to form hydrogels at physiological temperature without the addition of copper(I) catalyst. Crosslinking was confirmed using scanning electron microscopy, Fourier transform infrared and 1H NMR analyses. Flow by vial inversion and dynamic rheological methodologies were implemented to evaluate gelation kinetics at 37 °C of variable polymer compositions, concentrations and stoichiometric ratios. Kinetic studies revealed gelation in as little as 12 h at 37 °C, although strong gels that withstand inversion were observed by 1–8 days. CONCLUSION: The ability to form hydrogel networks under mild conditions demonstrates the potential viability of the catalyst‐free ‘click’ crosslinking chemistry for in situ gelling and other biological applications. Further chemical modifications in the crosslinking moieties, as well as polymer and crosslinker conformations, are expected to enhance gelation kinetics to a more biomedically practical rate. Copyright © 2009 Society of Chemical Industry  相似文献   

9.
Phase separation during the formation of poly(N‐isopropylacrylamide) (PNIPA) hydrogels was investigated using real‐time photon transmission and temperature measurements. The hydrogels were prepared by free‐radical crosslinking polymerization of N‐isopropylacrylamide (NIPA) in the presence of N,N′‐methylenebisacrylamide (BAAm) as a crosslinker in an aqueous solution. The onset reaction temperature T0 was varied between 20 and 28°C. Following an induction period, all the gelation experiments resulted in exothermic reaction profiles. A temperature increase of 6.5 ± 0.6°C was observed in the experiments. It was shown that the temperature increase during the formation and growth process of PNIPA gels is accompanied by a simultaneous decrease in the transmitted light intensities Itr. The decrease in Itr at temperatures below the lower critical solution temperature of PNIPA was explained by the concentration fluctuations due to the inhomogeneity in the gel network. At higher temperatures, it was shown that the gel system undergoes a phase transition via a spinodal decomposition process. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 3589–3595, 2002  相似文献   

10.
Poloxamer P407 (P407) is a Food and Drug Administration approved triblock copolymer; its hydrogels show fast dissolution in aqueous environment and weak mechanical strength, limiting their in vivo application. In this work, an amphiphilic poly(ether urethane) (NHP407) was synthesized from P407, an aliphatic diisocyanate (1,6‐hexanediisocyanate) and an amino acid derived diol (N‐Boc serinol). NHP407 solutions in water‐based media were able to form biocompatible injectable thermosensitive hydrogels with a lower critical gelation temperature behavior, having lower critical gelation concentration (6% w/v versus 18% w/v), superior gel strength (G′ at 37 °C about 40 000 Pa versus 10 000 Pa), faster gelation kinetics (<5 min versus 15–30 min) and higher stability in physiological conditions (28 days versus 5 days) compared to P407 hydrogels. Gel strength and PBS absorption at 37 °C increased whereas dissolution rate (in phosphate‐buffered saline (PBS) at 37 °C) and permeability to nutrients (studied using fluorescein isothiocyanate–dextran model molecule) decreased as a function of NHP407 hydrogel concentration from 10% to 20% w/v. By varying the concentration, NHP407 hydrogels were thus prepared with different properties which could suit specific applications, such as in situ drug/cell delivery or bioprinting of scaffolds. Moreover, deprotected amino groups in NHP407 could be exploited for the grafting of bioactive molecules obtaining biomimetic hydrogels. © 2016 Society of Chemical Industry  相似文献   

11.
This report describes the preparation and swelling behaviour of novel hydrogels based on a water‐soluble dimethacrylate monomer (EBisEMA), which is characterized by a relatively high molar mass (Mn ~ 1700 g mol?1) and contains a high proportion of aliphatic ether bonds in its structure. This feature results in moderately crosslinked and flexible polymer networks. Significant differences were observed in degree of swelling, depending on the synthesis method employed to obtain the hydrogels. The equilibrium water sorption of EBisEMA photopolymerized in bulk was 68 wt% while that of EBisEMA photopolymerized in aqueous solution (0.5 g mL?1) was 104 wt%. Thiol–methacrylate hydrogels were prepared by visible light photopolymerization of EBisEMA with a tetrafunctional thiol (PETMP) at various EBisEMA‐to‐PETMP molar ratios. These hydrogels contained unreacted thiol groups because of a faster homopolymerization reaction of EBisEMA. Hydrogels were also prepared in bulk by propylamine‐catalysed Michael addition reaction. No significant differences in swelling were observed between EBisEMA homopolymer and photocured EBisEMA–PETMP copolymer. Conversely, a marked increase in water uptake (110 wt%) was observed in the EBisEMA–PETMP hydrogels prepared by the Michael addition reaction catalysed by propylamine. These trends are explained in terms of a balance between the mass fraction of hydrophilic groups and the crosslinking density of the network. EBisEMA–PETMP hydrogels formulated with thiol in excess showed a noticeable tendency to adhere to diverse substrates, including paper, metals, glass and skin. This feature makes them especially attractive in applications for which adhesion is particularly critical such as dermatological patches. © 2018 Society of Chemical Industry  相似文献   

12.
Thiol–norbornene (thiol–ene) photoclick hydrogels have emerged as a diverse material system for tissue engineering applications. These hydrogels are crosslinked through light‐mediated orthogonal reactions between multifunctional norbornene‐modified macromers [e.g., poly(ethylene glycol) (PEG), hyaluronic acid, gelatin] and sulfhydryl‐containing linkers (e.g., dithiothreitol, PEG–dithiol, biscysteine peptides) with a low concentration of photoinitiator. The gelation of thiol–norbornene hydrogels can be initiated by long‐wave UV light or visible light without an additional coinitiator or comonomer. The crosslinking and degradation behaviors of thiol–norbornene hydrogels are controlled through material selections, whereas the biophysical and biochemical properties of the gels are easily and independently tuned because of the orthogonal reactivity between norbornene and the thiol moieties. Uniquely, the crosslinking of step‐growth thiol–norbornene hydrogels is not oxygen‐inhibited; therefore, gelation is much faster and highly cytocompatible compared with chain‐growth polymerized hydrogels with similar gelation conditions. These hydrogels have been prepared as tunable substrates for two‐dimensional cell cultures as microgels and bulk gels for affinity‐based or protease‐sensitive drug delivery, and as scaffolds for three‐dimensional cell encapsulation. Reports from different laboratories have demonstrated the broad utility of thiol–norbornene hydrogels in tissue engineering and regenerative medicine applications, including valvular and vascular tissue engineering, liver and pancreas‐related tissue engineering, neural regeneration, musculoskeletal (bone and cartilage) tissue regeneration, stem cell culture and differentiation, and cancer cell biology. This article provides an up‐to‐date overview on thiol–norbornene hydrogel crosslinking and degradation mechanisms, tunable material properties, and the use of thiol–norbornene hydrogels in drug‐delivery and tissue engineering applications. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41563.  相似文献   

13.
Hydrogels that can undergo gelation upon injection in vivo are promising systems for the site‐specific delivery of drugs. In particular, some thermo‐responsive gels require no chemical additives but simply gel in response to a change from a lower temperature to physiological temperature (37 °C). The gelation mechanism does not involve covalent bonds, and it is possible that incorporation of drugs into the hydrogel could disrupt gelation. We investigated the incorporation of drugs into thermo‐responsive hydrogels based on poly(?‐caprolactone‐co‐lactide)‐block‐poly(ethylene glycol)‐block‐poly(?‐caprolactone‐co‐lactide) (PCLA–PEG–PCLA). Significant differences in properties and in the response to incorporation of the anti‐inflammatory drug celecoxib (CXB) were observed as the PEG block length was varied from 1500 to 3000 g mol?1. Linear viscoelastic moduli of a PCLA–PEG–PCLA hydrogel containing a 2000 g mol?1 PEG block were least affected by the incorporation of CXB and this gel also exhibited the slowest release of CXB, so the incorporation of phenylbutazone, methotrexate, ibuprofen, diclofenac and etodolac was also investigated for this hydrogel. Different drugs resulted in varying degrees of syneresis of the hydrogels, suggesting that they interact with the polymer networks in different ways. In addition, the drugs had varying effects on the viscoelastic and compressive moduli of the gels. The results showed that the effects of drug loading on the properties of thermo‐responsive hydrogels can be substantial and depend on the drug. For applications such as intra‐articular drug delivery, in which the mechanical properties of the hydrogel are important, these effects should thus be studied on a case‐by‐case basis. © 2019 Society of Chemical Industry  相似文献   

14.
A dual‐crosslinked in situ gelling drug delivery scaffold based on dextran (DEX), thiolated serum albumin, and poly(ethylene glycol) (PEG) is presented. Dextran–vinyl sulfone conjugates with varied molecular weight and degrees of substitution are synthesized by controlling the reaction time and temperature with divinyl sulfone. Dextran–human serum albumin (sHSA) hydrogels are prepared using a thiol‐vinyl sulfone Michael addition reaction with thiolated albumin as the crosslinker. Poly(ethylene glycol) dithiol is added as a third component to the crosslinked dextran–human serum albumin hydrogel to facilitate additional crosslinking, and reduce gelation time, while modulating the physicochemical properties of the Dex–sHSA–PEG network. The onset of gelation of the modular three‐component dual‐crosslinked hydrogel network ranges from 45 min to 1.5 h depending on gel constituent concentrations and the gelation temperature (25 or 37 °C). All gels remain stable for over a 25 d period under physiological conditions. In vitro drug release assays show that dual‐crosslinked Dex–sHSA–PEG hydrogels can deliver doxorubicin in a sustained manner over 7 d. Finally, a Tetrazolium‐based assay shows the biocompatible nature of the Dex–sHSA–PEG hydrogels and capacity to deliver doxorubicin successfully to MCF‐7 breast cancer cells.  相似文献   

15.
A series of poly(N‐isopropylacrylamide) (PNIPA) hydrogels was prepared by free‐radical crosslinking copolymerization of N‐isopropylacrylamide (NIPA) and N,N′‐methylenebisacrylamide (BAAm) in aqueous solutions of poly(ethylene glycol) of molecular weight 300 g/mol (PEG). The amount of PEG in the polymerization solvent, the crosslinker (BAAm) content, and the gel preparation temperature (Tprep) were varied in the gelation experiments. The hydrogels were characterized by the equilibrium swelling and elasticity tests as well as by the measurements of the deswelling–reswelling kinetics of the hydrogels in response to a temperature change between 25 and 48°C. The rate of deswelling of the swollen gel increases while the rate of reswelling of the collapsed gel decreases as the amount of PEG in the polymerization solvent is increased or as the crosslinker content is decreased. The Tprep effect on the swelling kinetics of the hydrogels was only observed if the PEG content of the polymerization solvent is less than 20%, which is explained with the screening of H‐bonding interactions in concentrated PEG solution. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 37–44, 2006  相似文献   

16.
In this study, we have synthesized dextran hydrogels by the crosslinking reactions of dextran with some selective Cl‐, and N‐containing functional monomers, such as epichlorohydrin (ECH), N,N′‐methylenebisacrylamide (MBAm), and glutaraldehyde (GA). Crosslinking reactions were carried out in the basic aqueous solutions (2.8NNaOH) at 25–50°C. The optimum conditions for effective crosslinking, i.e., temperature, crosslinking time, and amount of crosslinker, were determined for each system. The hydrogel discs of 3 mm diameter and 1.5 mm thickness were subjected to a number of Tris‐buffer solutions of desired pH (2.0–9.0) at 37°C. Swelling kinetics of the hydrogels were evaluated with second–order swelling model. The pH‐dependent swelling of hydrogels was strongly influenced by the functional group of crosslinker and crosslinker content. While the hydrogels prepared with ECH and MBAm shows higher swelling ability at basic medium than that of acidic medium, GA‐containing hydrogels exhibited just the opposite behavior. Mesh sizes (ξ) and average molecular weights between crosslinks (Mc) were estimated from swelling data using the Flory‐Rehner theory. Characterization studies were completed by Fourier transform infrared spectroscopy and thermal gravimetric analysis. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102:4213–4221, 2006  相似文献   

17.
Cyclodextrin‐grafted cellulosic hydrogel beads (CD+@HEC‐CMC‐gel) were prepared through electrostatic and host–guest interactions. β‐Cyclodextrin (CD+) modified with quaternary ammonium groups was used as the electropositive binding site, and carboxymethyl cellulose (CMC) in a double‐network hydrogel structure was used as the electronegative binding site. The double‐network structure was obtained by controlling the crosslinking of CMC and hydroxyethyl cellulose (HEC) in the presence of epichlorohydrin. The electrostatic interaction was used to graft CD+ onto the electronegative double‐network structure. Scanning electron microscopy indicated an obvious change in the cellulosic double network after grafting of CD+. The grafting content of CD+ in CD@HEC‐CMC‐gel is determined as 93.10 ± 0.74% by the photometric titration method. In order to evaluate the assembling and releasing ability, ibuprofen (IBU) was selected to be encapsulated in CD+@HEC‐CMC‐gel by host–guest interaction. In addition, the release of IBU by the hydrogel beads was explained by several kinetic models. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46593.  相似文献   

18.
Macroporous poly(N‐isopropylacrylamide) (PNIPA) hydrogels were synthesized by free‐radical crosslinking polymerization in aqueous solution from N‐isopropylacrylamide monomer and N,N‐methylenebis (acrylamide) crosslinker using poly(ethylene glycol) (PEG) with three different number‐average molecular weights of 300, 600 and 1000 g mol?1 as the pore‐forming agent. The influence of the molecular weight and amount of PEG pore‐forming agent on the swelling ratio and network parameters such as polymer–solvent interaction parameter (χ) and crosslinking density (νE) of the hydrogels is reported and discussed. Scanning electron micrographs reveal that the macroporous network structure of the hydrogels can be adjusted by applying different molecular weights and compositions of PEG during polymerization. At a temperature below the volume phase transition temperature, the macroporous hydrogels absorbed larger amounts of water compared to that of conventional PNIPA hydrogels, and showed higher equilibrated swelling ratios in aqueous medium. Particularly, the unique macroporous structure provides numerous water channels for water diffusion in or out of the matrix and, therefore, an improved response rate to external temperature changes during the swelling and deswelling process. These macroporous PNIPA hydrogels may be useful for potential applications in controlled release of macromolecular active agents. Copyright © 2006 Society of Chemical Industry  相似文献   

19.
pH‐sensitive poly(N,N‐dimethylaminoethyl methacrylate) hydrogels were synthesized by free‐radical crosslinking polymerization using two different crosslinking agents; tetraethylene glycol dimethacrylate (TEGMA) and N,N′‐methylenebis(acrylamide) (BAAm). The influence of the polymerization factors such as the type of the crosslinking agent and the gel preparation concentration on the swelling behavior, the gel strength, the effective crosslinking density and the average chain length between the crosslink points for the resulting hydrogels was investigated. The results of the equilibrium swelling measurements in water showed that the linear swelling ratio of the resulting hydrogels increases with increasing gel preparation concentration. The swelling ratio of PDMAEMA hydrogels crosslinked with BAAm is larger than those for hydrogels crosslinked with TEGMA over the entire range of the polymer network concentration. The hydrogels exhibit very sharp pH‐sensitive phase transition in a very narrow range of pH between 7.7 and 8.0. From the mechanical measurements, it was also found that the linear swelling ratio of resulting hydrogels depends on the crosslinking density and also the type of the crosslinker used in the preparation. The resulting hydrogels are thought to be good candidates for pH‐sensitive drug delivery systems. POLYM. ENG. SCI. 2013. © 2012 Society of Plastics Engineers  相似文献   

20.
The formation of a series of semiinterpenetrating network (SIPN) hydrogels made by free‐radical copolymerization of N‐isopropylacrylamide (NIPA) and 2‐acrylamido‐2‐methylpropanesulphonic acid (AMPS) with varying comonomer mole ratios, crosslinked with N,N′‐methylene‐bisacrylamide (MBAA) in the presence of poly(ethylene glycol) (PEG) with average molecular weight 6,000 g mol?1 was studied via determination of complex viscosity, η*, using plate–plate rheometry. The isothermal time dependence of η* at various temperatures or the variation of η* with temperature of pregel solutions was utilized to detect the onset of gelation. The SIPN systems were compared with the corresponding gels made under the same conditions in the absence of PEG. The copolymer mainchain composition has a major effect on the time or temperature for onset of gelation and in particular gelation appears to be inhibited to some extent by MBAA when the AMPS/NIPA mole ratio in the pregel solution exceeds 0.5. The presence or absence of PEG in pregel solutions has a lesser effect on gelation. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 2083–2087, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号