首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A quantitative method to find the rate determining steps in the ion‐adsorption kinetics of polymer complexation agents is theoretically formulated and experimentally established. The degree of film‐diffusion control and particle‐diffusion control is simultaneously evaluated based on the law of addition of kinetic resistances combined with Einstein's viscosity expression. The change in the initial rate with respect to the resin concentration was scrutinized by plotting the effective rate constant versus the initial rate, and the film mass transfer coefficient was calculated. This is a concise and practical procedure to analyze the rate determining steps of polymer complexation kinetics. The validity of the method was confirmed by studying the adsorption of Cu(II) ion on crosslinked chitosans. In these materials, the importance of film diffusion was found both in adsorption and desorption processes. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44738.  相似文献   

2.
The ion‐exchange kinetics in polymer complexes was theoretically formulated. The regeneration of metal species from an ion‐exchange or chelate resin was described as a competitive reaction between metal ions and protons. We considered the ion‐exchange terms and the Langmuir terms to describe the rate of reaction, and film diffusion was also taken into account to describe the profile of the kinetics. In contrast to early methods, the surface concentrations were determined so that the rates of the chemical reactions and diffusion were self‐consistent. Although in the initial stage ion exchange was controlled by diffusion, in the last stage ion exchange was controlled by chemical reactions, particularly under excess acid. The kinetics were supported by experimental data for an iminodiacetic acid chelate resin and amidinourea resins. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39358.  相似文献   

3.
A new solvent‐free solid polymer electrolyte (SPE) films could be fabricated through bulk copolymerization process of amphiphilic urethane acrylate nonionomer (UAN). Amphiphilic UAN chain having polypropylene oxide‐based hydrophobic segment and polyethylene oxide‐based hydrophilic segment can not only dissolve lithium salt by complex formation with lithium cations but also be copolymerized with various monomers to form microphase‐separated polymeric matrix. Unlike conventional SPE systems showing higher conductivity with polar polymers and polar solvents, our SPE films prepared by copolymerization of UAN and hydrophobic monomers exhibited relatively higher conductivity. Dissolving lithium salts in UAN/hydrophobic monomer mixtures caused hydrophilic/hydrophobic microphase separation, which was more favorable for ionic conduction of lithium ions, resulting in the higher ionic conductivity than the SPE films fabricated using UAN/hydrophobic monomer mixture. This microphase‐separated structure of SPE films could be also confirmed by transmission electron microscope (TEM) images. Ionic conductivity of our SPE films could be also improved by dispersing clay minerals within SPE films. Three types of clay having different surface properties were used to fabricate clay/SPE nanocomposite films. Ionic conductivity of nanocomposite films depended on dispersibliity of clay nanoparticles with a SPE film, which was confirmed by measuring X‐ray diffraction and TEM. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

4.
The removal of copper from aqueous solution by ion exchange resins, such as 1200H and IRN97H, is described. Effect of initial metal ion concentration, agitation time and pH on adsorption capacities of ion exchange resins was investigated in a batch mode. The adsorption process, which is pH dependent, shows maximum removal of copper in the pH range 2–7 for an initial copper concentration of 10 mg/L. The experimental data have been analyzed by using the Freundlich, Langmuir, Redlich-Peterson, Temkin and Dubinin-Radushkevich isotherm models. The batch sorption kinetics have been tested for a first-order, pseudo-first order and pseudo-second order kinetic reaction models. The rate constants of adsorption for all these kinetic models have been calculated. Results showed that the intraparticle diffusion and initial sorption into resins of Cu(II) in the ion exchange resins was the main rate limiting step. The uptake of copper by the ion exchange resins was reversible and thus has good potential for the removal/recovery of copper from aqueous solutions. We conclude that such ion exchange resins can be used for the efficient removal of copper from water and wastewater. This paper is dedicated to Professor Hyun-Ku Rhee on the occasion of his retirement from Seoul National University.  相似文献   

5.
Adsorption capacity for Cr(VI) ions has been evaluated on two ion‐exchange resins. A gel‐type precursor resin was obtained by suspension polymerization of 4‐vinylpyridine and divinylbenzene monomers with 40% crosslinking degree. It was quaternized with different functional groups to give two ion‐exchange resins. The R2 resin contained sulfobetaine groups, and R3 methyl groups. The resins were characterized by Fourier transform infrared and solid‐state 13C CP/MAS NMR spectroscopy and by elemental analysis. An adsorption experiment was carried out by a batch equilibrium procedure. Langmuir and Freundlich isotherm models were used to determine the adsorption capacity. R2 and R3 resins exhibited maximum adsorption capacity qmax = 75.8 and 56.2 mg/g, respectively. The resins achieve equilibrium in 60 min. The R3 and R2 resins showed a retention capacity of 95% and 80% for the Cr(VI) ions, respectively. The behaviors of both resins were explained well by a pseudo‐second‐order kinetics model. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45548.  相似文献   

6.
The nanosphere having hydrophobic backbone and hydrophilic branches was used as the agent for the surface modification of a cellulose film. They were obtained by dispersion copolymerization of styrene (St) and poly(ethylene glycol) (PEG) macromonomers in an ethanol/water solution at 60°C by using a free‐radical initiator. The PEG‐coated polystyrene (PSt) nanosphere–water dispersions were prepared at concentrations of 0.1, 0.2, 0.5, and 1.0% (w/v). A measure of 1 mL of the dispersion was poured over the cellulose film, cut into a strip of 5 × 5 cm2. The film was pressed by plates heated at 200°C with 6.8 g/cm2 pressure for 2 min to melt PSt nanospheres and fix them on the cellulose film. The morphology of the film surface was also observed by a scanning electron microscopy (SEM). The resulting modified surface was characterized by X‐ray photoelectron spectroscopy (XPS). The contact angle, the moisture absorption, and the leakage of electrostatic charge from the film were studied. The surface of the film treated with the dispersion had high water‐repellency, although the bulk properties did not change. It was found that the dispersion was effective in making the cellulose surface hydrophobic. The surface modification of cellulose film was successful by using this simple method. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 1516–1523, 1999  相似文献   

7.
Several new chelating resins prepared from macroporous chloromethylated polystyrene‐co‐divinylbenzene by either direct attachment of the heterocyclic functional groups, such as 2‐aminopyridine, 2‐amino‐5‐methylthio‐1,3,4‐thiadizole, 2‐amino‐5‐ethyl‐1,3,4‐thiadizole, and 2‐mercaptobenzothiazole, to the polymeric matrix or through different hydrophilic spacer arms were tested for the adsorption properties toward Hg2+, Ag+, Cd2+, and Pb2+ in an ammonium acetate buffer solution of pH 3.0. The results show that these resins exhibited a high affinity for Hg2+ and Ag+. The introduction of hydrophilic spacer arms between the polymeric matrix and heterocyclic functional groups resulted in an increase in the hydrophilicity and adsorption capacity of the resins. The presence of spacer arms made the kinetics of adsorption faster. The influence of the length of the spacer arm on the adsorption properties was also investigated. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

8.
Sepharose FF was modified with diethylaminoethyl‐dextran (DEAE‐dextran, DexD) and/or DEAE (D) to fabricate three types of ion exchangers FF‐DexD (grafting‐ligand resin), FF‐D (surface‐ligand resin), and FF‐D‐DexD (mixed‐ligand resin), for protein adsorption equilibria and kinetics study. It was found that both adsorption capacity and uptake rate (effective diffusivity, De) were significantly enhanced by grafting DEAE‐dextran. Notably, the De values on FF‐DexD and FF‐D‐DexD (De/D0 > 1.4) were six times greater than those on FF‐D (De/D0 < 0.3). More importantly, the increase of surface‐ligand density greatly enhanced uptake kinetics on FF‐D‐DexD. The results indicate that the surface ligands assisted the transport of bound proteins on polymer chains in the mixed‐ligand resins. That is, surface ligands worked as “transfer stations” between two neighboring chains, resulting in enhanced transport of bound proteins on chains. The research thus disclosed the unique role of surface ligands in facilitating protein uptake kinetics onto polymer‐grafted ion‐exchangers. © 2016 American Institute of Chemical Engineers AIChE J, 62: 3812–3819, 2016  相似文献   

9.
In order to achieve the effective interface bonding between biomass microfiller and commodity plastics, consecutive copolymerization of hydrophilic acrylic acid (AA) and hydrophobic butyl acrylate (BA) using vapor‐phase assisted surface polymerization (VASP) technology was applied to prepare microcomposites consisting of cellulose microcrystal (CμC) and polypropylene (PP). After the copolymerization by VASP, CμC surfaces were covered by accumulated polymers: P(AA‐co‐BA) including block‐type copolymer and homopolymers of 6.2–25.3 wt % versus CμC. Although structures of the products were unspecified, it was expected to be mixtures of block copolymers and homopolymers. Subsequently prepared P(AA‐co‐BA) on CμC/PP (5/95 wt/wt) composites expressed a superior mechanical toughness, which had increased threefold when compared to intact CμC/PP composite. This increase in toughness was mainly based on an increase in elongation rate, reflecting improvement of the adhesion strength at the interface between CμC surface and PP. The trace amounts: 0.31 wt % of accumulated P(AA‐co‐BA) on CμC surface must function as an effective adhesive/compatibilizer at the interface. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45647.  相似文献   

10.
Adsorption of water on mineral surfaces was studied using density functional theory and microcalorimetry technique. The calculation results show that galena and molybdenite are hydrophobic, while pyrite and sphalerite is hydrophilic. Thermokinetic analysis shows that the heat of adsorption is in decreasing order of pyrite, sphalerite, galena and molybdenite, which is in good agreement with the calculation results. The adsorption kinetics parameters of hydrophobic galena and molybdenite surfaces are close, while those of hydrophilic pyrite and sphalerite surfaces are very different. The adsorption rate of water on the sphalerite surface is larger than that of water on the pyrite surface.  相似文献   

11.
The adsorption properties, including the adsorption kinetics, adsorption isotherms, and adsorption selectivity, of newly formed chelating resins that contained a heterocyclic functional group and a hydrophilic spacer arm of poly(ethylene glycol) [polystyrene–diethylene glycol–2‐amino‐5‐methylthio‐1,3,4‐thiadizole (PS–DEG–AMTZ) and polystyrene–triethylene glycol–2‐amino‐5‐methylthio‐1,3,4‐thiadizole (PS–TEG–AMTZ)] were studied in detail. The results show that the adsorption kinetics of PS–DEG–AMTZ and PS–TEG–AMTZ for Hg2+ and Ag+ could be described by a pseudo‐second‐order rate equation. The introduction of a spacer arm between the polymeric matrix and functional group was beneficial for increasing the adsorption rates. The apparent activation energies of the resins for Hg2+ and Ag+ were within 20.89–32.32 kJ/mol. The Langmuir model could describe the isothermal process of Hg2+ and Ag+. The competitive adsorption of the resins for Hg2+ and Ag+ in binary mixture systems was also investigated. The results show that Hg2+ and Ag+ were adsorbed before the other metal ions, such as Cu2+, Zn2+, Fe3+, Cd2+, and Pb2+, under competitive conditions. Five adsorption–desorption cycles were conducted for the reuse of the resins. The results indicate that these two resins were suitable for reuse without considerable changes in the adsorption capacity. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

12.
Poly(acrylic acid–amidoxime) [P(AA–AO)] and poly(maleic acid–amidoxime) [P(MA–AO)] resins were prepared by the γ‐radiation‐induced copolymerization of acrylonitrile with acrylic acid and maleic acid, respectively. The obtained resins were amidoximated by reaction with hydroxylamine. The prepared resins were used for the removal of methyl violet (MV) dye from aqueous solutions. Batch adsorption studies were made by the measurement of the effects of pH, the amount of adsorbent, the contact time, and the adsorbate concentration. The adsorption isotherm of MV onto P(AA–AO) and P(MA–AO) was determined at 25°C with initial MV dye concentrations of 10–70 mg/L. The equilibrium data were analyzed with the Langmuir and Freundlich isotherm models. The equilibrium process was described well by the Langmuir isotherm model with maximum adsorption capacities of 398.4 and 396.8 mg/L for P(AA–AO) and P(MA–AO), respectively. The kinetics of adsorption of MV onto P(AA–AO) and P(MA–AO) are discussed. The pseudo‐second‐order kinetic model described the adsorption of MV onto P(AA–AO) and P(MA–AO) very well. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

13.
Transparent silicone hydrogels with interpenetrating hydrophilic/hydrophobic networks were simultaneously synthesized on the basis of the radical polymerization of the methacrylic monomer of 3‐methacryloxypropyl tris(trimethylsiloxy) silane (TRIS)/N,N‐dimethylacrylamide (DMA) and the addition polymerization of hydroxyl‐grafted polysiloxane (HPSO)/isophorone diisocyanate. The curing temperature was set at 80°C by a differential scanning calorimetry study. The polymerization process was studied by in situ Fourier transform infrared spectroscopy. The results indicate that the curing time was about 4.5 min, and the addition polymerization had a faster rate than radical polymerization. Then, the radical polymerization rate increased rapidly, and this led to instant curing. The interpenetrating polymer network (IPN) silicone hydrogels were characterized by swelling kinetics and dynamic mechanical thermal analysis. The results show that all of the hydrogels reached swelling equilibrium at about 4 h in water, and the IPN silicone hydrogels with a hydrophobic network of HPSO indicated a slower water transport than that of the copolymerization hydrogel of DMA and TRIS. The hydrophobic network was finely dispersed in the hydrophilic network, and the increasing hydrophobic network of HPSO decreased the glass‐transition temperature of the IPN silicone hydrogels. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41399.  相似文献   

14.
A novel chelating resin was synthesized in just one step under mild synthetic conditions. The synthesis was carried out through the copolymerization of thiosemicarbazide and formaldehyde in an aqueous solution. The adsorption properties for some noble metal ions were investigated. The results showed that the resin had high adsorption selectivity for Au(III) and Ag(I). The adsorption capacities for the two metal ions reached up to 7.3 and 11.8 mmol/g, respectively. The adsorption rate for the two metal ions in a dilute solution was 99.9%. The adsorption fit first‐order kinetics, and an isothermal adsorption study indicated that it corresponded to Langmuir monomolecular layer adsorption. The change in the bonding energy during the chelating process was investigated with X‐ray photoelectron spectroscopy. The study revealed that nitrogen and sulfur atoms of the resins were electron donors and metal ions were electron acceptors in the process. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

15.
The effects of the surface chemistry of TiO2 powders on the dispersion performance of various dispersants are studied. Four common dispersants (oleic acid, oleylamine, oleyl phosphate, and tris‐(2‐butoxyethyl) phosphate) with different functional groups (carboxyl (–COOH), amino (–NH2), phosphate (–P(=O)(OH)2), and –P(=O)) are investigated for their potential to disperse hydrophilic and hydrophobic titania (TiO2) powders. The outcomes, based on adsorption kinetics, adsorption isotherms, rheologies, and theoretical calculations, indicate that the hydrophilic TiO2 is more sensitive to the chemistry of dispersants as compared to the hydrophobic TiO2. However, the relative dispersion efficiencies of the dispersants are not found relevant to the adsorption kinetics, which is dominated by the adsorption amount. In addition, hydrogen bonding between –OH groups of the phosphate‐based dispersants dominates their dispersion ability for TiO2.  相似文献   

16.
为优选除Ni~(2+)交换树脂,采用电镀镍废水(Ni~(2+)的质量浓度为80 mg/L)研究了5种阳离子交换树脂对Ni~(2+)的吸附等温式和吸附动力学,考察了其对电镀镍废水中Ni~(2+)的吸附交换容量、吸附交换速率、再生性能以及废水中共存离子对树脂处理电镀镍废水效能的影响。结果表明,在120 min内5种阳离子树脂对Ni~(2+)的吸附基本达到平衡,吸附等温线均符合Freundlich吸附,吸附动力学均遵循准二级动力学方程;KP752和CH-90树脂对Ni~(2+)吸附交换容量分别为22.421和22.831 mg/g,吸附效果最好,并且2种树脂对Ni~(2+)的回收率都可达80%以上;共存的Ca~(2+)、Mg~(2+)会显著影响CH-90树脂吸附Ni~(2+)的效果,而对KP752树脂的影响较小。  相似文献   

17.
The composite latex particles of poly(methyl methacrylate)–poly(methacrylic acid) [poly(MMA–MAA)] were synthesized through either soapless seeded emulsion polymerization or a soapless emulsion copolymerization technique. The reaction kinetics, morphology, and size of latex particles, composition, glass transition temperature (Tg), and molecular weight of polymer products were studied under different experimental conditions. Moreover, this work also focused on the humidity‐sensitive properties of the polymer films fabricated by melting under the temperature of 200°C and followed by chemical modification with aqueous solution of NaOH. It is confirmed that there exists both an optimum ratio of hydrophilic to hydrophobic monomers and the initial structure of the latex particle to provide the humidity‐sensitive polyelectrolyte film with excellent water resistivity and good sensitivity to humidity. Besides, little hysteresis and quick response were observed. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 47–57, 1999  相似文献   

18.
Hydrophobic interaction-mediated reversible adsorption–desorption of Ag nanoparticles in water solutions was studied in surface-tailored poly(N-isopropylacrylamide) (PNIPAAm) hydrogel film. Surface-tailoring of PNIPAAm hydrogel was performed by the preparation of the hydrogel as a honeycomb-patterned film using a honeycomb-patterned PS film as a template. The surface morphology and hydrophobic interaction of the patterned hydrogel surface were significantly altered by temperature change of the aqueous solution that came in contact with the gel. The surface of the hydrogel became hydrophobic for adsorption at a higher temperature than the lower critical solution temperature of 32 °C, but became hydrophilic with decreased adsorptivity at lower temperature condition. Adsorptivity was obtained through measuring the concentration of the silver nanoparticles using UV–vis spectroscopy in an aqueous solution. A reversible adsorption–desorption of nanoparticles dependent on the temperature in the hydrogel surface obtained in this study clearly suggested that the hydrophobic interaction was reversibly changed in the patterned temperature-responsive hydrogel surface, similar to various biological systems in nature.  相似文献   

19.
Under bubble with air compressor, macroporous adsorption resin was functionalized with amino and acetyl groups. The method avoided the fragmentation of the resin during modification. Alizarin yellow GG (AYGG) was used as an adsorbate to investigate adsorption kinetics of the modified resins. It showed that pseudofirst‐order and pseudosecond‐order kinetics cannot reasonably express the adsorption process. A new kinetic model, multi‐layer adsorption model, showed much better fit to the adsorption kinetic data and corresponding kinetic parameters could predict adsorption mechanism. Meantime, AYGG can be easily recovered, and the resins can be regenerated. Due to π – π , electrostatic force and hydrogen bond interaction between the resin and carboxyl, phenolic hydroxyl, and azo groups of AYGG, the resin with amino group showed higher adsorption capacity than the other resins used in this study. Steric hindrance and decrease in electrostatic force were unfavorable for the enrichment of AYGG by the resin with acetyl group. Response surface model combining with central composite design was used to determine effects of pH and initial concentration on adsorption. It showed that a second‐order polynomial regression model could reasonably express the experimental data and optimum adsorption conditions were obtained. The design provided an effective methodology to optimize an adsorption process. POLYM. ENG. SCI., 54:1960–1968, 2014. © 2013 Society of Plastics Engineers  相似文献   

20.
To improve the moisture sorption property of nylon‐6,6 film, ally pentafluorobenzene (APFB) was incorporated on the argon plasma‐pretreated nylon film by UV or thermally induced surface graft copolymerzation. The plasma pretreatment introduced peroxides that were degraded into radicals to initiate the graft copolymerization of APFB on the nylon surface. The modified surfaces were characterized by X‐ray photoelectron spectroscopy (XPS) and contact angle measurement. The moisture sorption was assessed by the coulometric test method. The efficiency of surface graft copolymerization was affected by plasma pretreatment time of the nylon substrate, as well as by the UV or thermal graft copolymerization time. The UV graft‐copolymerized nylon film exhibited a significantly lower extent of moisture sorption when compared to that of the pristine films, even at low graft concentration. However, the moisture sorption behavior for the thermally graft copolymerized films was similar to that of the pristine films. Contact angle and XPS measurements suggested that the reduction in moisture sorption for the UV graft‐copolymerized nylon‐6,6 film was attributable to the fact that the hydrophobic polymer layer was formed on the nylon surface, and the hydrophobic layer of an appropriate thickness could serve as an effective barrier to moisture. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 1366–1373, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号