首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
    
Increasing attention has recently been paid to the rheological behavior of microgel colloids and to the physical forces that control their behavior. Here, based on a series of cationic microgels that were synthesized by inverse microemulsion polymerization, the physical forces were explored by viscosity analysis of swollen microgels with different crosslinking densities and cationic contents. The results indicate that within a wide concentration range, the viscosity curves for these cationic microgels perfectly correspond to the Krieger–Dougherty model as modified by Tan et al. In particular, the specific volume in this model decreases at the critical overlapping concentration and reveals the interaction intensity between neighboring microgels. Furthermore, the viscosity index in the Herschel–Bulkley equation indicates that the interaction domain among microgels undergoes a transfer from an electroviscous effect to osmotic deswelling with increasing concentrations. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46297.  相似文献   

2.
    
Polymer aqueous nanofluids have numerous industrial applications due to their synergic properties as a polymer and nanoparticle in the same fluid. The main goal of this work was to prepare stable aqueous nanofluids with improved viscosity in high temperature and salinity conditions. Aminated carbon nanotube (OCNT‐TEPA) presented a C? N photoemission peak at 285.5 eV in X‐ray photoelectron spectroscopy spectra, which is evidence of a grafting reaction. Fourier transform infrared spectra presented absorption bands attributed to amide and amine bonds. Elemental analyses showed 1.9 and 3.2 mass % N content increases for OCNT‐TEPA and OCNT‐TEPA‐AM, respectively. Samples aged at 70 °C in brine confirmed that the addition of OCNT‐TEPA increased the viscosity of nanofluids to 30% at day 90 compared to acrylamide–acrylic acid copolymer fluids. N anotubes presented only 35% of the aminated functions compared to carbon black (Lima et al., Carbon 2016, 109, 209) , and their effects in the enhancement of viscosity and thermal and colloidal stability were 2× greater. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46382.  相似文献   

3.
    
Gels based on polyacrylamide crosslinking with polyethyleneimine have attracted attention because of their resulting high strength and good thermal stability. This study investigated the gelation mechanism of the polymeric gel and its plugging performance in air‐foam flooding. An optic microrheology analyzer was used to monitor the gelation process. The crosslinking reaction occurred in two steps, as determined from the elasticity factor curves, and the polymeric gels adopted a semisolid state from solution, as determined from the solid liquid balance curves. The elastic modulus values were higher than the viscous modulus values, indicating that mature gels were elastic‐based materials. The yield stress increased gradually with increasing polymer dosage, which was consistent with the breakthrough pressure and the trend of displacement pressure. The mature gels showed significant thixotropy. In the core displacement test, the preferred injection volume of the gel was 0.1 pore volume, and the stable pressure of the foam flooding was increased by about three times after the core was plugged. The blocking effect for cores with small original permeability was better than that with large permeability. The best blocking resulted from simultaneous treatment of both ends of the cores, followed by front‐end treatment and rear‐end treatment. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45778.  相似文献   

4.
Organic/inorganic hybrid aqueous solutions were prepared by mixing silica nanoparticle suspension and hydrophobically associating polyacrylamide (HAPAM) solution, and their rheological behaviors were examined in both pure water and brine in comparison with HAPAM. It was found that HAPAM/silica hybrid exhibits viscosity enhancement in aqueous solution and better heat‐ and salt‐ tolerances than HAPAM. Meanwhile, their long‐term thermal stability is also improved. Cryo‐TEM observation reveals that a reinforced three‐dimensional network structure of HAPAM/silica hybrid is formed. These improved properties are attributed to the formed hydrogen bond between carbonyl groups in HAPAM skeleton and silanol functionalities in silica nanoparticles in the hybrid system, and the silica nanoparticles in the hybrid act as physical crosslinkers between macromolecules. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40876.  相似文献   

5.
    
Small molecule borate crosslinker widely used in hydraulic fracturing treatment has a low crosslinking efficiency of less than 1%. Thus boric acid was introduced onto the surface of reactive nanosilica (denoted as nano‐SiO2; size: about 20 nm) containing ? NH2 group to obtain a nanosilica‐based crosslinker (denoted as nano‐crosslinker) with increased crosslinking efficiency, thereby broadening the application of nano‐SiO2 in guar gum fracturing fluid. Moreover, the influence of the as‐prepared nano‐crosslinker on the rheological behavior of guar gum gel was investigated with borate crosslinker as a reference. Results show that boric acid chemically reacts with the amino group of the reactive nano‐SiO2 to form N? B bond, which is beneficial to the formation of the network structure of guar gum gel. The guar gum gel crosslinked with the 57 ppm of borate based on the carrier of nano‐SiO2 exhibits better temperature tolerance and shear resistance as well as breaking behavior than the counterpart crosslinked with 200 ppm of borate. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 45037.  相似文献   

6.
This article presents an experimental study aiming to explore the relationship among rheological properties, flow characteristics in porous media, and enhanced oil recovery (EOR) performance of three typical EOR polymers. The results suggest that xanthan gum exhibits a very pronounced shear‐thinning behavior, which is probably also the reason explaining its moderate adsorption extent within porous media (thickness of adsorbed layer, e = 3.1 μm). The advanced viscoelastic properties coupled with the less adsorption extent compared to the hydrophobically modified copolymer (HMSPAM) allow xanthan gum to establish a “piston‐like” displacement pattern and lead up to 49.4% original oil in place (OOIP) of the cumulative oil recovery during polymer flooding. Regarding HMSPAM, the significant permeability reduction of the porous media induced by multilayer adsorption (e = 5.6 μm) results in much higher drive forces (ΔP) in the extended waterflooding stage, which further raises the cumulative oil recovery by 18.5% OOIP. In general, xanthan gum and HMSPAM totally produced 84% OOIP which is 15% higher than the extensively used EOR polymer, hydrolyzed polyacrylamide (HPAM), under the same experimental conditions. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41598.  相似文献   

7.
Hydrophobically modified polyelectrolytes have been suggested as an alternative to the more commonly used polyelectrolytes in enhanced oil recovery (EOR) applications involving polymers. Compared to regular polyelectrolytes, the hydrophobically modified polyelectrolytes are known to be more stable at high salinities. In this study, we have investigated the influence of brine salinity and ionic composition for a series of six hydrophobically modified polyelectrolytes with the same polymer backbone, but with an increasing average number of hydrophobic groups per polymer molecule. Polymer characterization has been performed using a combination of steady‐state shear viscosity and dynamic oscillatory measurements. Hydrophobic interactions leading to a change in rheological properties was only observed above a threshold value for the concentration of hydrophobe. At the threshold value, salt‐induced hydrophobic interactions were observed. For higher concentrations of hydrophobe, high salinity solutions showed one order of magnitude increase in viscosity compared to the polymer without hydrophobic groups. This could partly be explained by an increase in elasticity. These findings have important implications for polymer selection for EOR. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43520.  相似文献   

8.
    
Thermoviscosifying polymers are attractive for enhancing oil recovery owing to their exceptional thickening power as temperature increases. However, the polymers reported to date show inadequacies including obligatory high polymer concentration to get the thermothickening ability because of their low molecular weight (MW), and inconvenient post‐treatment due to the high viscosity after manufacturing. To overcome these drawbacks, inverse emulsion polymerization was used here for preparing polyether‐based thermoviscosifying polymers (TVP‐Ps) by grafting acrylic monomers onto triblock copolymers PEO–PPO–PEO. It was found the MW of final products could reach 8 million Daltons, making them thermoviscosifying at 0.2 wt %. The viscosity of polymerized inverse emulsions was as low as 175 mPa·s, leading to direct dispersing. The TVP‐Ps containing Pluronic F127, F108, F68 all exhibited significant thermothickening behaviors in both aqueous solutions and brines, and the critical thermoassociative temperature could be tuned by changing the nature or amount of Pluronics. After aging at 45 °C for 60 days with equal initial viscosity, TVP‐Ps shows 21% higher viscosity retention than the reference polymer without Pluronic, PAMA, and preliminary core flooding test demonstrated TVP‐Ps can get 2.1% higher incremental oil recovery than PAMA. This work paves a new avenue for scaled‐up preparation and potential use of TVP‐Ps. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 134, 46696  相似文献   

9.
    
In the process of oilfield development, salt tolerance is an important property for enhanced oil‐recovery (EOR) chemicals. In this study, we synthesized two acrylamide‐based sulfobetaine copolymers containing 2‐hydroxy‐3‐[(3‐methacrylamidopropyl)dimethylammonio]propane sulfonate (SHPP) or 3‐(4‐acry‐loyl‐1‐methyl‐piperazinio)‐2‐hydroxypropane sulfonate (SHMP). The interactions between these two copolymers and inorganic salts were compared, and the apparent viscosity (ηapp) behaviors of copolymer–salt solutions at different shear rates and temperatures were investigated. We found that the ηapp of PAPP and PAMP showed intensive antisalt performance, exhibiting an excellent antipolyelectrolyte effect. The ηapp retention value of 30,000 mg/L PAMP in brine was 86.47 mPa s at 510 s?1, and when the temperature was increased to 90 °C, it was 99.73 mPa s; this was better than that of PAPP under the same conditions. Therefore, PAMP was more applicable as an EOR chemical that have outstanding salt tolerance and temperature resistance. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46235  相似文献   

10.
    
Gel systems composed of biopolymers can be used, which block the regions of high water permeability during a previously established period, through the in situ formation of a gel inside the rock pores. Among the biopolymers studied, xanthan gum has attracted the greatest attention due to its viscosifying power and good stability in reservoirs subject to severe salinity and temperature from 27 to 90°C. Xanthan chains have the ability to build up physical networks with metals such as aluminum lactate to form hydrogels. Therefore, the objective of this study was to prepare and evaluate, hydrogels made from xanthan gum (XG) cross-linked with aluminum lactate. Initially, the influence of the gel formulation (biopolymer concentration and cross-linker) and the reservoir conditions (pH, temperature, salinity) of the gel strength of the system and the injectivity of the gel systems was investigated through rheological tests. Subsequently, was analyzed the morphology of the systems for 30 days by scanning electron microscopy (SEM). The results showed that the systems based on xanthan gum cross-linked, were able to form strong gels at pH 8, temperature of 70°C and salinity of 29,940 mgL−1 TDS. In general, the evaluated parameters (pH, temperature, salinity, polymer concentration, and cross-linker) had a direct effect on the initial strength of the gel. However, after aging for 30 days, a drop in gel resistance was observed, since all systems have similar tan (δ) values and these parameters no longer show significant influence The aging analysis of hydrogel systems by SEM showed a difference in the surface microstructure of the dry hydrogel over the 30 days.  相似文献   

11.
    
Gellan gum is a biopolymer widely used in the food, pharmaceutical, chemical, and agrochemical fields. Its ability to form a strong gel makes it possible to produce fluid gels. These materials present an apparent yield stress, but its value could be influenced by the wall-slip effect when performing the rheological measurements by which it is determined. In this work, the influence of the measuring surface and gap on flow behavior was first determined. The tests revealed the need to use geometries with rough surfaces, although the sample thickness using a parallel plate has no influence. Subsequently, the value of yield stress was obtained by means of creep tests (found to be 4.3 Pa), and, finally, the effect of wall slip on the dynamic viscoelastic behavior was assessed. There was an influence on the extension of the linear viscoelastic region, but not on the viscoelastic functions of the mechanical spectra. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 46900.  相似文献   

12.
Hyperbranched poly(ether sulfone) (HPES), a suitable coating additive for improving the rheological properties of linear poly(ether sulfone) (LPES), was easily produced via polymerization of commercially available bisphenol S (A2 monomer, BPS) and synthesized 2,4′,6‐trifluoro‐phenylsulfone (BB′2 monomer, TF). During this reaction, fluoro‐ or phenolic‐terminated HPES (F‐HPES or OH‐HPES) could be facilely obtained by controlling the feed mole ratios of the two monomers. The polymerization mode A2 + BB′2 was confirmed by analyzing the model compounds and the degree of branching (DB) was calculated systematically. In addition, the synthesized polymers' chemical structures were exhibited by FTIR, 1H NMR as well as 19F NMR spectroscopy. Notably, the addition of 1 wt % HPES reduced the melt viscosity and improved the high temperature liquidity of LPES because of its unique spherical shape. Furthermore, the addition of HPES did not have a negative impact on the performance of LPES, which was attributed to the good miscibility between HPES and LPES. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43892.  相似文献   

13.
The operating windows of the solution casting of two polymeric liquids were evaluated experimentally. The experimental setup and procedure were the same as used previously for the casting of Newtonian fluids (Journal of Applied Polymer Science 2013, 129, 507–516). Aqueous carboxymethylcellulose/glycerol solutions exhibited pure shear‐thinning behavior at low polymer concentrations but became viscoelastic at high polymer concentrations, whereas polyacrylamide/glycerol solutions showed viscoelastic behavior over a wide range of concentrations. The shear‐thinning behavior, in conjunction with a low level of elasticity, of the casting solution was found to be useful in expanding the stable operating windows. However, an opposite effect on the operating windows was found for highly elastic solutions. The non‐Newtonian effect on the maximum stable casting speed was prominent only when the capillary number exceeded unity. Defects outside of the operating window were mostly similar to those observed in Newtonian solution casting. For highly concentrated solutions, a new rough surface defect was observed. This defect could be attributed to polymer chain entanglement, alignment, or breakup. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41411.  相似文献   

14.
    
In this study, the melt linear viscoelastic rheological properties of polyamide 6 (PA6)–acrylonitrile butadiene styrene terpolymer (ABS) immiscible blends were analyzed with the help of Coran and fractional Zener models (FZMs) to assess the microstructure of the blends. For this purpose, dynamic shear flow experiments and scanning electron microscopy investigations were performed. The nonzero value of the elastic modulus of the spring element (Ge) of the FZM for ABS‐rich blends was explained by the formation of a networklike structure because of the agglomeration of the rubber phases of the ABS matrix, whereas for the PA6‐rich blends with a high content of ABS, the interactions and/or interconnectivity of the ABS dispersed phase led to a nonzero value of Ge. The value of the fitting parameter of the Coran model (f) was near to 0.5 for the 50/50 blend; this was fully in agreement with the formed cocontinuous morphology for this blend composition. On the other hand, the f value for the blends with a matrix–droplet‐type morphology was near to zero for the PA6‐rich blends; this indicated the lower continuity of the ABS dispersed phase as a harder phase compared to the PA6 soft matrix, whereas the f value was near to 1 for ABS‐rich blends. This confirmed the formation of an interconnected networklike structure for this series of blends. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45423.  相似文献   

15.
    
Hydrogels' viscoelastic behavior is crucial in several applications and an in-depth knowledge and characterization of this property is essential to select the most appropriate gel for the specific use. Oscillatory shear measurements are the most commonly used techniques to perform the viscoelastic characterization of hydrogels, among other materials, and it is performed mainly by using plate-plate shear rheometers. Despite these instruments constitute one of the best options to analyze the mechanical response of materials, they are quite expensive and require well trained operators, which confine their presence exclusively in engineering labs. However, the use of hydrogels brought these materials to be present in countless sectors, and therefore poses the need of reliable characterization with as much simple and common instrumentations. Therefore, aim of this work is to present the possibility to obtain a trustworthy characterization of the viscoelasticity of hydrogel by using a Texture Analyzer set to work with sinusoidal deformations.  相似文献   

16.
POEGMA‐b‐PAA comb‐like polymer is synthesized through RAFT polymerization, and it is employed as an efficient dispersant for Al2O3 suspensions. The POEGMA‐b‐PAA polymer consists of PAA chains and POEGMA comb‐like chains. The former provide electrostatic attraction between Al2O3 particles and polymer, while the latter extend to solution and maintain the stability of suspension due to strong steric hindrance. The adsorption is proven and the rheology behaviors of Al2O3 suspensions are strongly improved. Different POEGMA‐b‐PAA polymers with different length of side chains have similar but not identical rheological properties. The polymer with the appropriate length of side chain provides the biggest improvement to rheological properties of Al2O3 suspensions, such as apparent viscosity and granularity. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43352.  相似文献   

17.
    
Semiflexible polymers and their assemblies are important in biology as cross-linked networks of semiflexible polymers form a major structural component of tissue and living cells. This research used shear rheology to demonstrate the tuning from worm-like to rod-like conformation in semiflexible polymers by polymer-solvent interactions. The conformation was assessed by the persistence length lp, and its influence, in the semidilute regime, was assessed by the scaling of zero-shear viscosity ηo with concentration c and molecular weight . The polymers were poly n-butyl and poly n-octyl isocyanate (PBIC and POIC, respectively). PBIC exhibited the largest lp in chlorinated solvents, and the solutions obeyed the scaling law . However, when PBIC was dissolved in benzene the lp was greatly reduced and the scaling law now was , consistent with a worm-like conformation. On the other hand, POIC dissolved in chlorinated and benzenic solvents exhibited a worm-like conformation and the scaling was . These results were contrasted with those of hydroxypropyl cellulose (HPC) aqueous solutions, which exhibit worm-like conformation, the solutions obeyed the scaling ηoc2.5 . Finally, the shear viscosity of the polyisocyanates and HPC obeyed the Saito scaling, valid for anisotropic particles in solution.  相似文献   

18.
    
The melt viscosity of triblock copolymer styrene-isoprene-styrene (SIS) filling systems decreased in some sense by adding 0.1 wt% fillers. The types of fillers included both nano- and non-nano fillers. It was insufficient to explain the phenomenon of viscosity reduction only from the view of nanoscale effects of particles. The results of SAXS and TEM enabled us to relate this behavior to the damage of PS microphase in SIS. The PS microphase acted as a strong entanglement point in the SIS system. When it was damaged, the entanglement among molecular chains weakened greatly, resulting in a decrease in viscosity. The dynamic viscoelasticity (complex viscosity, storage modulus, and loss modulus) of the filling systems was also studied.  相似文献   

19.
Geometrical dependence of viscosity of polymethylmethacrylate (PMMA) and high density polyethylene (HDPE) are studied by means of a twin‐bore capillary rheometer based on power‐law model. Contrary geometrical dependences of shear viscosity are observed for PMMA between 210 and 255°C, but similar geometrical dependences are revealed for HDPE between 190 and 260°C. The fact that wall slip can not successfully explain the irregular geometrical dependence of PMMA viscosity is found in this work. Then, pressure effect and dependence of fraction of free volume (FFV) on both pressure and temperature are proposed to be responsible for the geometrical dependence of capillary viscosity of polymers. The dependence of shear viscosity on applied pressure is first investigated based on the Barus equation. By introducing a shift factor, shear viscosity curves of PMMA measured under different pressures can be shifted onto a set of parallel plots by correcting the pressure effect and the less shear‐thinning then disappears, especially at high pressure. Meanwhile, the FFV and combining strength among molecular chains are evaluated for both samples based on molecular dynamics simulation, which implies that the irregular geometrical dependence of PMMA viscosity can not be attributed to the wall slip behavior. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2014 , 131, 39982.  相似文献   

20.
The objective of the research is to obtain a more complete understanding of how aging affects the viscoelastic properties of polymer solutions to be used as starting materials for gel spinning of polymer fibers. Specifically, poly(acrylonitrile‐co‐methacrylic acid) solutions were prepared and characterized using rheological measurements and nuclear magnetic resonance spectroscopy. The results indicate that elastic character increased with increasing polymer concentration and that gelation of these solutions continued up to aging times of several weeks. Additionally, comparing the results from the two characterization methods show that while gelation continues to occur, the viscoelastic properties decrease after a critical time point suggesting that a chemical change occurs in the solutions at long times. However, these changes impact the solution dynamics minimally as the effective network properties were similar at the aging times studied here, but considerations for long‐term storage of polymer solutions for gel spinning are warranted. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39821.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号